Cho tam giác ABC cân tại A có 2 đường trung tuyến BM và CN. Cmr tứ giác BMNC là hình thang cân
Cho tam giác ABC cân tại A có 2 đường trung tuyến BM và CN. Chứng minh: Tứ giác BMNC là hình thang cân.
Làm rõ từng bước giúp mình nhé, thanks nhìu!
ΔABC cân tại A, suy ra :
Góc B = Góc C; AB=AC; Góc B = (180 độ - góc A)/2 (1)
Ta có: AM=1/2AC; AN=1/2AB
=> AM=AN(Vì AB=AC)
=> Tam giác AMN cân tại A
=> Góc AMN = (180 độ - góc A)/2 (2)
Từ (1) và (2) => Góc B = Góc AMN
=> MN//BC (Góc B; Góc AMN ở vị trí đồng vị)
=>BNMC là hình thang.
Mà: Góc B = Góc C
=> BNMC là hình thang cân
Cho tam giác ABC cân tại A ,đường trung tuyến BM và CN. Chứng minh tứ giác BNMC là hình thang cân
I don't now
or no I don't
..................
sorry
BM, CN là đường trung tuyến => AM = MC; AN = BN
Tam giác ABC có AM = MC; AN = BN
=> MN là đường trung tuyến tam giác ABC
=> MN // BC
=> BNMC là hình thang
mà góc NBC = góc MCB (gt)
=> hình thang BNMC là hình thang cân
CHO TAM GIÁC ABC CÂN TẠI A
A/ĐƯỜNG PHÂN GIÁC BD,EC (D ∈ AC ,E ∈ AB).CMR TỨ GIÁC BEDC LÀ HÌNH THANG CÂN CÓ CẠNH BÊN BẰNG ĐÁY NHỎ
B/ĐƯỜNG CAO BH,CK (H ∈ AC, K ∈ AB).CMR: BKHC LÀ HÌNH THANG CÂN
C/ĐƯỜNG TRUNG TUYẾN BM ,CN (M ∈ AC, N ∈ AB). CMR :BNCM LÀ HÌNH THANG CÂN
a) Ta có \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Do BD là phân giác \(\widehat{ABC}\)\(\Rightarrow\widehat{ABD}=\widehat{DBC}\)
CE là phân giác \(\widehat{ACB}\)\(\Rightarrow\widehat{ACE}=\widehat{ECB}\)
Mà \(\Delta ABC\)cân \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Suy ra \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)
Xét \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)( tự xét nha :)))
\(\Rightarrow AD=AE\)\(\Rightarrow\Delta AED\)cân tại A
\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà hai góc đó ở vị trí đồng vị
\(\Rightarrow ED//BC\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra : BEDC là hình thang cân (3)
Ta có : \(ED//BC\Rightarrow\widehat{EDB}=\widehat{DBC}\)( so le trong )
Mà \(\widehat{EBD}=\widehat{DBC}\)
Suy ra \(\widehat{EDB}=\widehat{EBD}\)\(\Rightarrow\Delta BED\)cân tại E
\(\Rightarrow EB=ED\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)BEDC là hình thang cân có cạnh bên bằng đáy nhỏ -_-
b) Xét \(\Delta ABH=\Delta ACK\left(ch-gn\right)\)( tự xét )
\(\Rightarrow AK=AH\)\(\Rightarrow\Delta AKH\)cân tại A
\(\Rightarrow\widehat{AKH}=\frac{180^o-\widehat{BAC}}{2}\left(5\right)\)
Từ (1) và (5) \(\Rightarrow\widehat{AKH}=\widehat{ABC}\)
Mà hai góc trên ở vị trí đồng vị
Suy ra : KH // BC
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra : BKHC là hình thang cân
c) Do BM là trung tuyến \(\Rightarrow AM=\frac{1}{2}AC\)
CN là trung tuyến \(\Rightarrow AN=\frac{1}{2}AB\)
Mà AB = AC \(\Rightarrow AN=AM\)
\(\Rightarrow\Delta AMN\)cân tại A \(\Rightarrow\widehat{ANM}=\frac{180^o-\widehat{BAC}}{2}\left(6\right)\)
Từ (1) và (6) \(\Rightarrow\widehat{ANM}=\widehat{ABC}\)
Mà hai góc trên ở vị trí đồng vị
\(\Rightarrow MN//BC\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra BNMC là hình thang cân
Vậy ...
CHO TAM GIÁC ABC CÂN TẠI
A/ĐƯỜNG PHÂN GIÁC BD,EC (D ∈ AC ,E ∈ AB).CMR TỨ GIÁC BEDC LÀ HÌNH THANG CÂN CÓ CẠNH BÊN BẰNG ĐÁY NHỎ
B/ĐƯỜNG CAO BH,CK (H ∈ AC, K ∈ AB).CMR: BKHC LÀ HÌNH THANG CÂN
C/ĐƯỜNG TRUNG TUYẾN BM ,CN (M ∈ AC, N ∈ AB). CMR :BNCM LÀ HÌNH THANG CÂN
CHO TAM GIÁC ABC CÂN TẠI A
A/ĐƯỜNG PHÂN GIÁC BD,EC (D ∈ AC ,E ∈ AB).CMR TỨ GIÁC BEDC LÀ HÌNH THANG CÂN CÓ CẠNH BÊN BẰNG ĐÁY NHỎ
B/ĐƯỜNG CAO BH,CK (H ∈ AC, K ∈ AB).CMR: BKHC LÀ HÌNH THANG CÂN
C/ĐƯỜNG TRUNG TUYẾN BM ,CN (M ∈ AC, N ∈ AB). CMR :BNCM LÀ HÌNH THANG CÂN
GIÚP VS BẠN ƠI
a: Xét ΔADB và ΔAEC có
góc BAD chung
AB=AC
góc ABD=góc ACE
Do đó: ΔADB=ΔAEC
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
=>BEDC là hình thang
mà góc EBC=góc DCB
nên BEDC là hình thang cân
Xét ΔEDB có góc EDB=góc EBD(=góc DBC)
nên ΔEDB cân tại E
=>BE=ED=DC
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó ΔAHB=ΔAKC
=>AH=AK
Xét ΔABC có AK/AB=AH/AC
nên KH//BC
=>BKHC là hình thang
mà góc KBC=góc HCB
nên BKHC là hình thang cân
c: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
=>BNMC là hình thang
mà góc B=góc C
nên BNMC là hình thang cân
Cho tam giác ABC cân tại A. Vẽ BM và CN là 2 đường trung tuyến. a/ Chứng minh: BM = CN b/Chứng minh: Tứ giác BNMC là hình thang cân. c/ Gọi I là giao điểm của BM và CN. Chứng minh: AI vuông góc với MN
Bài 1. Cho tam giác ABC cân tại A. Trên các cạnh AB, AC lấy các điểm M, N sao cho BM = CN. a) Tứ giác BMNC là hình gì? b) Tính các góc của tứ giác BMNC biêt 0 A 50 . Bài 2. Hình thang cân ABCD( AB // CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa hai cạnh bên cắt nhau tại K. Chứng minh: a) IA = IB b) Tam giác ICD cân tại I c) KI là đườn chung trực của hai đáy. Bài 3. Cho tam giac ABC cân tại A, M là trung điểm của AB, N là trung điểm của AC. a) Chứng minh: Tư giác BMNC là hình thang cân. b) Biết 0 B 60 , AB = 10 cm. Tính chu vi của hình thang cân BMNC
CHO TAM GIÁC ABC CÂN TẠI
A/ĐƯỜNG PHÂN GIÁC BD,EC (D ∈ AC ,E ∈ AB).CMR TỨ GIÁC BEDC LÀ HÌNH THANG CÂN CÓ CẠNH BÊN BẰNG ĐÁY NHỎ
B/ĐƯỜNG CAO BH,CK (H ∈ AC, K ∈ AB).CMR: BKHC LÀ HÌNH THANG CÂN
C/ĐƯỜNG TRUNG TUYẾN BM ,CN (M ∈ AC, N ∈ AB). CMR :BNCM LÀ HÌNH THANG CÂN
các bạn giúp mik vs...........................................................................................................
a: Xét ΔADB và ΔAEC có
góc BAD chung
AB=AC
góc ABD=góc ACE
Do đó: ΔADB=ΔAEC
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
=>BEDC là hình thang
mà góc EBC=góc DCB
nên BEDC là hình thang cân
Xét ΔEDB có góc EDB=góc EBD(=góc DBC)
nên ΔEDB cân tại E
=>BE=ED=DC
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó ΔAHB=ΔAKC
=>AH=AK
Xét ΔABC có AK/AB=AH/AC
nên KH//BC
=>BKHC là hình thang
mà góc KBC=góc HCB
nên BKHC là hình thang cân
c: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
=>BNMC là hình thang
mà góc B=góc C
nên BNMC là hình thang cân
cho tam giác abc cân tại a vẽ hai đường trung tuyến be và cf cắt nhau tại g gọi m ,n lần lượt là trung điểm của gb và gc cmr tứ giác bmnc là hình thang cân lm giúp với
Mik vẽ là B bên trái và C bên phải nha
Ta có BE là đường trung tuyến => B1 = B2
Tương tự C1 = C2
Ta có M , N là trung điểm của GB và GC => MN là đừng trung bình của tam giác GBC
=> MN // BC => MNCB là hình thang ( 1 )
Ta có : B1 = B2 ; C1 = C2
Mà B = C
=> B2 = C2 ( 2 )
Từ ( 1) và ( 2 ) => MNCB là hình thang cân
T nha các bạn
Đề sai rồi bạn ơi:
Nếu tam giác ABC là tam giác bất kì thì trường
hợp hình thang BMNC là cân ko thể xảy ra.
MIK vẽ hình rồi
bạn ơi cho mk hỏi tổng 2 góc ddoois trong hình thang cân là thế nào ạ? ví dụ trong hình thang cân ABCD thì 2 góc nào là 2 góc đối ạ? bn giải thích giúp mk vì mk cx đang nghĩ bài này
: Cho tam giác ABC, hai đường trung tuyến BM, CN cắt nhau tại G. Gọi E, F lần lượt là trung điểm của GB và GC. a) Chứng minh tứ giác BCMN là hình thang; b) Chứng minh tứ giác EFMN là hình bình hành. c) Nếu tam giác ABC cân tại A có o A 50 thì tứ giác BCMN là hình gì? Tính các góc của tứ giác BCMN
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
hay BCMN là hình thang