Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HT
Xem chi tiết
H24
13 tháng 12 2023 lúc 20:38

\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

hay giá trị của biểu thức trên luôn dương

\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)

Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)

hay giá trị của biểu thức trên luôn dương

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 3 2018 lúc 13:45

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

Bình luận (0)
MD
1 tháng 3 2018 lúc 13:46

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

Bình luận (0)
AN
1 tháng 3 2018 lúc 13:47

1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)

\(=-11-\left(3x-2\right)^2\le-11< 0\)

Câu b và câu 2 tương tự

Bình luận (0)
VA
Xem chi tiết
LL
1 tháng 9 2021 lúc 18:23

a) \(x^2-3x+8=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{23}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\)

b) \(2x^2-2x+2=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}>0\)

Bình luận (0)
NT
1 tháng 9 2021 lúc 21:57

a: Ta có: \(A=x^2-3x+8\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{23}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\forall x\)

b: Ta có: \(B=2x^2-2x+2\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\)

Bình luận (0)
TN
Xem chi tiết
NT
22 tháng 10 2021 lúc 22:55

a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)

\(=x^2-x-2-2x^2+3x+2x^2+4\)

\(=x^2+2x+2\)

Bình luận (0)
NM
22 tháng 10 2021 lúc 22:55

\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)

Bình luận (0)
HM
Xem chi tiết
AK
Xem chi tiết
TL
23 tháng 10 2016 lúc 11:59

a) \(x^4-x^2+3=\left[\left(x^2\right)^2-2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}\right]+\frac{11}{4}=\left(x^2-\frac{1}{2}\right)^2+\frac{11}{4}>0\)

=>đpcm

b) \(x^2-x+1=\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

=>đpcm

c) \(x^2+x+2=\left(x^2+2\cdot x+\frac{1}{2}+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=>đpcm

d) \(\left(x+3\right)\left(x-11\right)+20\)

\(=x^2-11x+3x-33+20\)

\(=x^2-8x-13\)

\(=\left(x^2-8x+16\right)-29=\left(x+4\right)^2-29\)

Xem lại đề

Bình luận (1)
HM
Xem chi tiết
HM
5 tháng 8 2023 lúc 12:07

a, Khi x = 2, ta được: 

\(A=\dfrac{4}{2\sqrt{2}-2}=2+2\sqrt{2}\)

b, \(B=\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\\ \Rightarrow B=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ \Rightarrow B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(P=B:A=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{4}=-\left(\sqrt{x}-1\right)=1-\sqrt{x}\) (đpcm)

Bình luận (0)
BN
Xem chi tiết
TN
10 tháng 7 2018 lúc 13:34

\(x^4+x^2+2=\) \(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

                          \(=\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>0\)với mọi x

\(\left(x+3\right)\left(x-11\right)+2014=\) \(x^2-11x+3x-33+2014\)

                                                         \(=\) \(x^2-8x+1981\)

                                                          \(=\)  \(x^2-2.x.4+16+1965\)

                                                           \(=\)  \(\left(x-4\right)^2+1965>0\)với mọi x

Bình luận (0)
H24
Xem chi tiết
AH
22 tháng 7 2021 lúc 16:30

Lời giải:
a.

$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$

$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$

$=4(2x+8)+2(-2)(2x-8)$

$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$

b.

$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$

c.

$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$

$=x^4+2x^2-(x^4+6x^2-4x^2)$

$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$

 

Bình luận (0)
NT
22 tháng 7 2021 lúc 21:34

a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)

\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)

\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)

\(=34\)

b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-8-x^3-8\)

=-16

c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)

\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)

\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)

\(=-9\)

Bình luận (0)