HT

Chứng minh các giá trị của các biểu thức sau luôn dương

a)x^2-2x+y^2+4y+6

b)x^2-2x+2

H24
13 tháng 12 2023 lúc 20:38

\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

hay giá trị của biểu thức trên luôn dương

\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)

Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)

hay giá trị của biểu thức trên luôn dương

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TK
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
VA
Xem chi tiết