Những câu hỏi liên quan
HN
Xem chi tiết
H24
23 tháng 2 2021 lúc 17:53

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 2 2021 lúc 19:49

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

Bình luận (0)
 Khách vãng lai đã xóa
LD
23 tháng 2 2021 lúc 19:52

Bài 2.

a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)

ĐKXĐ : x khác -1

<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)

<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)

=> 3x( x + 1 ) = -2

<=> 3x2 + 3x + 2 = 0

Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x

=> phương trình vô nghiệm

b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)

ĐKXĐ : x khác 0 ; x khác 2

<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)

=> 4x2 - 7x + 14 = 4x2 - 8x

<=> 4x2 - 7x - 4x2 + 8x = -14

<=> x = -14 ( tm )

Vậy phương trình có nghiệm x = -14

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
MY
16 tháng 2 2022 lúc 20:14

\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)

\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)

\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)

\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)

\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
DL
16 tháng 2 2022 lúc 20:08

3.15:

a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)

 

b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

 

3.16

\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)

\(\Leftrightarrow-14m+35-2m^2+8=0\)

\(\Leftrightarrow-14m-2m^2+43=0\)

\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)

\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)

\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)

\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)

pt vô nghiệm

Bình luận (0)
TC
Xem chi tiết
NL
28 tháng 7 2021 lúc 20:24

ĐKXĐ: \(x\ge2\)

\(\dfrac{\left(\sqrt{3x-5}-\sqrt{x-2}\right)\left(\sqrt{3x-5}+\sqrt{x-2}\right)}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)

\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\Rightarrow x=\dfrac{3}{2}\left(ktm\right)\\\sqrt{3x-5}+\sqrt{x-2}=3\left(1\right)\end{matrix}\right.\)

Xét (1)

\(\Leftrightarrow\sqrt{3x-5}-2+\sqrt{x-2}-1=0\)

\(\Leftrightarrow\dfrac{3\left(x-3\right)}{\sqrt{3x-5}+2}+\dfrac{x-3}{\sqrt{x-2}+1}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}\right)=0\)

\(\Leftrightarrow x-3=0\)  (do \(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}>0;\forall x\ge2\))

\(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

Bình luận (0)
YV
Xem chi tiết
TN
18 tháng 8 2017 lúc 9:18

giải phương trình là tìm ra x hả bn?

Bình luận (0)
YV
18 tháng 8 2017 lúc 9:42

Ai giúp mình với !!!

Bình luận (0)
TN
18 tháng 8 2017 lúc 9:58

Ta có : \(\left(\sqrt{a}\right)^2=\left(\sqrt{b}\right)^2\Rightarrow a=b\) hoặc \(a=-b\)

1) \(\sqrt{2x-3}-\sqrt{x+3}=0\)

\(\Rightarrow\sqrt{2x-3}=\sqrt{x+3}\)

\(\Rightarrow\left(\sqrt{2x-3}\right)^2=\left(\sqrt{x+3}\right)^2\)

\(\Rightarrow2x-3=x+3\) hoặc 2x - 3 =-( x+3) =-x-3           (với \(x+3;2x-3\) không âm)

\(\Rightarrow2x-x=3+3\)  hoặc 2x + x  = 0 

\(\Rightarrow x=6\)  hoặc x=0 ( loại vì \(2.0-3\) là số âm )

Vậy x = 6

2) \(\sqrt{2x-3}=\sqrt{x+1}\)

\(\Rightarrow\left(\sqrt{2x-3}\right)^2=\left(\sqrt{x+1}\right)^2\)

\(\Rightarrow2x-3=x+1\)hoặc 2x-3 = -x -1 (với x + 1 và 2x - 3 không âm)

=> 2x - x = 1+3   hoặc 2x + x = -1+3 =2 => 3x = 2

=> x  = 4 hoặc  x = 2/3 (loại vì  2.\(\frac{2}{3}\) - 3 là số âm)

Vậy x=4

3) \(\sqrt{x-1}=\sqrt{2x+3}\) 

\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\sqrt{2x+3}\right)^2\)

\(\Rightarrow x-1=2x+3\)  hoặc x - 1 = -2x - 3 (với x - 1 và 2x +3 không âm)

\(\Rightarrow x-2x=3+1\) hoặc x - (-2x) = -3 +1 => 3x = -2

\(\Rightarrow-x=4\Rightarrow x=-4\)  hoặc x = -2/3 (cả 2 đều không thỏa mãn điều kiện    x - 1 và 2x +3 không âm)

Vậy không có x thỏa mãn..

4/5 bạn cứ làm tương tự

Vì mình ms lên lp 7 nên mấy bài này giải ko đc chuẩn lắm.

Bình luận (0)
TN
Xem chi tiết
DH
Xem chi tiết
HA
5 tháng 10 2019 lúc 15:32

Một hình chữ nhật có chu vi gấp 6 lần chiều rộng biết chiều rộng bằng 4 tính diện tích hình chữ nhật các bạn lm từng bước một giúp mk nhé cảm ơn :)))))

Bình luận (0)
H24
Xem chi tiết
LD
Xem chi tiết
H24
8 tháng 8 2017 lúc 15:18

Theo Wolfram ta có: (tự viết đề lại nhé)

\(3x^2+22x+40=0\)

\(\Leftrightarrow4x^2+24x+49=x^2+6x+9\)

\(\Rightarrow\orbr{\begin{cases}x=-4\\x=-\frac{10}{3}\end{cases}}\)

Ps: chả biết đúng hay sai!

Bình luận (0)
NK
8 tháng 8 2017 lúc 15:19

\(\left(2x+7\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left(2x+7\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x+7-x-3\right)\left(2x+7+x+3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-\frac{10}{3}\end{cases}}\)

Vậy pt có 2 nghiệm x=-4,x=-10/3

Bình luận (0)
HT
8 tháng 8 2017 lúc 15:24

\(\left(2x+7\right)^2=\left(x+3\right)^2\)

\(\left(2x+7\right)^2-\left(x+3\right)^2=0\)

\(\left(2x+7-x-3\right)\left(2x+7+x+3\right)=0\)

\(\left(x+4\right)\left(3x+10\right)=0\)

\(\orbr{\begin{cases}x+4=0\\3x+10=0\end{cases}=>\orbr{\begin{cases}x=-4\\x=\frac{-10}{3}\end{cases}}}\)

vậy \(x=-4\)    hoặc     \(x=\frac{-10}{3}\)

Bình luận (0)
TN
Xem chi tiết
H24
15 tháng 7 2021 lúc 9:50

`|x-2|=2x-3(x>=3/2)`

`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\) 

`<=>x=5/3(Tm(`

`2)A=-x^2+2x+9`

`=-(x^2-2x)+9`

`=-(x^2-2x+1)+1+9`

`=-(x-1)^2+10<=10`

Dấu "=" xảy ra khi `x=1.`

Bình luận (0)
MY
15 tháng 7 2021 lúc 9:52

1,

\(|x-2|=x-2< =>x\ge2\)

\(=>x-2=2x-3< =>x=1\left(ktm\right)\)

*\(\left|x-2\right|=2-x< =>x< 2\)

\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)

vậy x=5/3

2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)

\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)

dấu"=" xảy ra<=>x=1

Bình luận (0)
NT
15 tháng 7 2021 lúc 14:49

Bài 1: 

Ta có: \(\left|x-2\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\left(x\ge2\right)\\2-x=2x-3\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=-3+2\\-x-2x=-3-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-1\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(lọai\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)

Bình luận (0)