Cho tam giác ABC vuông tại A có phân giác AD, đường cao AH. Biết CD = 68cm, BD = 51cm. Tính BH, CH
Bài 1. Chi tam giác ABC vuông tại A phân giác AD, đường cao AH biết CD= 68cm, BD=51cm. Tính BH,HC
Bài 2 . Cho tam giác ABC vuông tại A đường cao AH biết AB=7,5cm, AH=6cm.
a, Tính AC,BC
b, Tính Cos B, Cos C
Bài 1:
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)
Cho Δ ABC vuông tại A, đường cao AH, đừng phân giác AD. Biết CD= 68cm, BD= 51cm. Độ dài đoạn BH, HC bằng?
Bài 1: Cho tam giác ABC, có AB = 6cm, BC = 10cm. Các đường phân giác trong và ngoài của góc B cắt AC lần lượt tại D và E. Tính BD và BE.
Bài 2: Cho tam giác ABC vuông tại A, đường phân giác trong AD, đường cao AH, CD = 68cm, BD = 51cm. Tính BH
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD=15cm, CD=20cm. Tính BH,CH?
BC=15+20=35cm
BD/CD=3/4
=>AB/AC=3/4
BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16=35/25=1,4
=>BH=12,6cm; CH=22,4cm
cho tam giác ABC vuông tại A, đường cao AH, biết AH=4,8cm, BH=3,6cm. a) Tính CH, AB, AC b) Gọi AD là tia phân giác của góc A. Tính BD, CD, HD, AD
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{4.8^2}{3.6}=6.4\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=36\\AC^2=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông tại A , đường phân giác AD đường cao AH . biết BD=7,5cm , CD=10cm ,tính AH , BH , DH
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
hay \(AB=\dfrac{3}{4}AC\)
Ta có: BD+CD=BC
nên BC=17,5cm
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=\dfrac{1225}{4}\)
\(\Leftrightarrow AC^2=196\)
hay AC=14cm
\(\Leftrightarrow AB=\dfrac{3}{4}AC=10.5\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=8.4\left(cm\right)\\BH=6.3\left(cm\right)\end{matrix}\right.\)
Cho ∆ABC vuông tại A , đường phân giác AD , đường cao AH . Biết BD = 75cm , CD = 100cm . Tính BH , CH , AH , AD
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{75}{100}=\frac{3}{4}(1)$
$BC=BD+CD=75+100=175$
Theo định lý Pitago:
$AB^2+AC^2=BC^2=175^2(2)$
Từ $(1); (2)\Rightarrow AB=105; AC=140$ (cm)
$BH=\frac{AB^2}{BC}=\frac{105^2}{175}=63$ (cm) - theo hệ thức lượng trong tam giác vuông
$CH=BC-BH=175-63=112$ (cm)
$AH=\sqrt{AB^2-BH^2}=\sqrt{105^2-63^2}=84$ (cm)
$HD=BD-BH=75-63=12$ (cm)
$AD=\sqrt{AH^2+DH^2}=\sqrt{84^2+12^2}=60\sqrt{2}$ (cm)
Cho tam giác ABC vuông tại A , đường cao AH , phân giác AD . Biết BD = 7,5cm , CD = 10cm . Tính AH , BH , HD .