Viết dưới dạng tổng 2 bình phương
\(x^2-2x+2+4y^2+4y\)
Viết các biểu thức sau dưới dạng bình phương của một tổng (hiệu).
c, (2x-4y)2+2(2x-4y)+1
Giải chi tiết hộ mình với.Mình cảm ơn rất nhiều
\(\left(2x-4y\right)^2+2\left(2x-4y\right)+1=\left(2x-4y+1\right)^2\)
(2x-4y)2+2(2x-4y)+1
=(2x-4y)2+2(2x-4y)+12
=(2x-4y+1)2
viết biểu thức sau dưới dạng tổng của 2 bình phương: x^2 + 4y^2 -6x + 4y +10
x^2 + 4y^2 -6x + 4y +10
=x2-6x+9+4y2+4y+1
=(x-3)2+(2y+1)2
x^2-4y^2-6x+4y+10
= x^2- 2.x.3 + 9 + 4y^2-2.2y+1
= ( x - 3)^2+ (2y-1) ^2
Viết dưới dạng tổng các bình phương:
a. 10x^2+40x+50
b. 16x^2+5+8x-4y+y^2
c. 2x^2-2y^2+4x-4y-4xy
a/ \(=\left(9x^2+30x+25\right)+\left(x^2+10x+25\right)=\)
\(=\left(3x+5\right)^2+\left(x+5\right)^2\)
b/ \(=\left(16x^2+8x+1\right)+\left(y^2-4y+4\right)=\left(4x+1\right)^2+\left(y-2\right)^2\)
c/
chuyển về dạng tổng hai bình phương: x^2-2x+2+4y^2+4y
`x^2-2x+4y^2+4y+2`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
Ta có: \(x^2-2x+2+4y^2+4y\)
\(=x^2-2x+1+4y^2+4y+1\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
Viết mỗi biểu thức sau dưới dạng bình phương của một tổng, một hiệu hoặc hiệu hai bình phương:
a) 25x2-5xy+1/4y2
b) 9x2 + 12x + 4
c) x2 – 6x + 5 – y2 – 4y
d) (2x – y)2 + 4.(x + y)2 – 4.(2x – y).(x + y)
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
viết mỗi biểu thức sau dưới dạng tổng của 2 bình phương
a) t^2 -8t+x^2-4x+20
b)49t^2+y^2-10y+14t+26
c) 2x^2+4y^2-2x+4xy+2
a) t2 - 8t + x2 - 4x + 20 = ( t2 - 8t + 16 ) + ( x2 - 4x + 4 ) = ( t - 4 )2 + ( x - 2 )2
b) 49t2 + y2 - 10y + 14t + 26 = ( 49t2 + 14t + 1 ) + ( y2 - 10y + 25 ) = ( 7t + 1 )2 + ( y - 5 )2
c) 2x2 + 4y2 - 2x + 4xy + 1 = ( x2 - 2x + 1 ) + ( x2 + 4xy + 4y2 ) = ( x - 1 )2 + ( x + 2y )2 ( thay 2 thành 1 vì 2 khó làm lắm:v )
Câu 1:
a, (x-1).(x2-x+1)
b, (2a+b).(2a-b)
Câu 2:
a,(2x-1).(x2-5x+3)
b,(-x2+4x-1).(-x+4)
c,(-2x-3).(x+4)+(-x+1)
d,(-3).(x+4).(x-7)+2.(x-5).(x+1)
Câu 3:
a,5x2-(2x+1).(x-2)-x.(3x+3)+7
b,(5x-2).(x+1)-(x-3).5x+1-17.(x-2)
Giup mình với
Mình gửi kiểu kia ko được
Viết biểu thức sau dưới dạng tổng của 2 bình phương
a) x^2+4y+4y^2+26-10x
b) 4y^2+34-10+12y+x^3
c) -10x+y^2-8y+x^2+41
d) x^2+9y^2-12y+29-10x
a) x2 + 4y + 4y2 + 26 - 10x = ( x2 - 10x + 25 ) + ( 4y2 + 4y + 1 ) = ( x - 5 )2 + ( 2y + 1 )2
b) 4y2 + 34 - 10x + 12y + x2 = ( x2 - 10x + 25 ) + ( 4y2 + 12y + 9 ) = ( x - 5 )2 + ( 2y + 3 )2
c) -10x + y2 - 8y + x2 + 41 = ( x2 - 10x + 25 ) + ( y2 - 8y + 16 ) = ( x - 5 )2 + ( y - 4 )2
d) x2 + 9y2 - 12y + 29 - 10x = ( x2 - 10x + 25 ) + ( 9y2 - 12y + 4 ) = ( x - 5 )2 + ( 3y - 2 )2
a) \(x^2+4y+4y^2+26-10x\)
\(=\left(x^2-10x+25\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-5\right)^2+\left(2y+1\right)^2\)
b) \(4y^2+34-10x+12y+x^2\) đề ntn à?
\(=\left(4y^2+12y+9\right)+\left(x^2-10x+25\right)\)
\(=\left(2y-3\right)^2+\left(x-5\right)^2\)
c) \(-10x+y^2-8y+x^2+41\)
\(=\left(x^2-10x+25\right)+\left(y^2-8y+16\right)\)
\(=\left(x-5\right)^2+\left(y-4\right)^2\)
d) \(x^2+9y^2-12y+29-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2-12y+4\right)\)
\(=\left(x-5\right)^2+\left(3y-2\right)^2\)
viết cácđa thức sau dưới dạng bình phương của 1 tổng:
a) A= 4x2+ y2 +4xy- 8x-4y+4
b) B= x2- 4xy+2x-4y+4y2+1
c) C= 10x4+ 32x3+24x2+8x+1
a, Đề sai bạn ơi phải là cộng 16 chứ không phải cộng 4
b,B= (x-2y+1)^2
viết các biểu thức sau dưới dạng bình phương của một tổng hay một hiệu:
a) (x^2+9x+18)^2+2(x^2+9x)+37
b) x^2+y^2+2x+2y+2(x+1)(y+1)+2
c) x^2-2x(y+2)+y^2+4y+4
d) x^2+2x(y+1)+y^2+2y+1
a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)
\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)
\(=\left(x^2+9x+19\right)^2\)
b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)
\(=\left(x^2+2x+2+y^2+2y\right)^2\)
c) Ta có: \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2+2\cdot x\cdot\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x+y+2\right)^2\)
d) Ta có: \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2\cdot x\cdot\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)