Những câu hỏi liên quan
TN
Xem chi tiết
 .
3 tháng 9 2019 lúc 19:54

\(n^2+4n+3=n^2+2.n.2+2^2-1\)

\(=\left(n+2\right)^2-1\)

\(=\left(n+2-1\right).\left(n+2+1\right)\)

\(=\left(n-1\right).\left(n+3\right)⋮8\)

Bình luận (0)
LT
3 tháng 9 2019 lúc 19:56

Ta có n2+4n+3=(n+1)(n+3)

Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp

Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2

Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh

Bình luận (0)
ZZ
3 tháng 9 2019 lúc 20:15

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=n\left(n+3\right)+\left(n+3\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Do n lẻ ta đặt \(n=2k+1\)

Ta có:\(\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

Mà \(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên \(\left(k+1\right)\left(k+2\right)⋮2\)

Khi đó:\(n^2+4n+3=4\left(k+1\right)\left(k+2\right)⋮8\)

Bình luận (0)
NH
Xem chi tiết
TH
14 tháng 2 2016 lúc 16:04

bai toan nay kho quá

Bình luận (0)
NP
Xem chi tiết
DA
Xem chi tiết
HN
6 tháng 9 2016 lúc 17:29

Với mọi n là số tự nhiên lẻ, ta có thể biểu diễn n = 2k+1 với k là số tự nhiên

Ta có : \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=\left(2k+2\right)\left(2k+4\right)=2.\left(k+1\right).2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

mà (k+1)(k+2) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2

Suy ra \(n^2+4n+3\) chia hết cho 2x4 = 8 với mọi n lẻ

Bình luận (0)
SG
6 tháng 9 2016 lúc 17:27

Ta có: 

n2 + 4n + 3

= n2 + n + 3n + 3

= n.(n + 1) + 3.(n + 1)

= (n + 1).(n + 3)

Do n lẻ => n = 2.k + 1 (k thuộc N)

=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)

= (2.k + 2).(2.k + 4)

= 2.(k + 1).2.(k + 2)

= 4.(k + 1).(k + 2)

Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2

-=> 4.(k + 1).(k + 2) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 (đpcm)

Bình luận (3)
LH
6 tháng 9 2016 lúc 17:28

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)

\(\text{n = 2k + 1}\) (lẻ)

Do đó: \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)\)

\(=2\left(k+1\right)2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

Có: (k + 1)(k + 2) = 2k 

\(\Rightarrow4\left(2k+1\right)\left(k+2\right)=4.2k=8k⋮8\left(\text{đ}pcm\right)\)

 

Bình luận (0)
PH
Xem chi tiết
XT
Xem chi tiết
VT
19 tháng 6 2016 lúc 10:30

  bài toán dễ thôi nhưng em nên hiểu lấy bản chất dạng bài để làm các bài tương tự thế này: 
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

Bình luận (0)
OO
19 tháng 6 2016 lúc 10:34

bài toán dễ thôi nhưng em nên hiểu lấy bản chất dạng bài để làm các bài tương tự thế này: 
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

Bình luận (0)
OO
19 tháng 6 2016 lúc 10:34

bài toán dễ thôi nhưng em nên hiểu lấy bản chất dạng bài để làm các bài tương tự thế này: 
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

Bình luận (0)
TT
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết
NL
28 tháng 10 2019 lúc 22:37

\(n=2k+1\)

\(\Rightarrow A=\left(2k+1\right)^2+4\left(2k+1\right)+11\)

\(=4k^2+12k+16\)

\(=4k\left(k+3\right)+16\)

Do \(k\)\(k+3\) luôn khác tính chẵn lẻ \(\Rightarrow k\left(k+3\right)⋮2\Rightarrow4k\left(k+3\right)⋮8\)

\(\Rightarrow A⋮8\)

Bình luận (1)
 Khách vãng lai đã xóa