Ôn tập toán 8

DA

CMR: n2 + 4n + 3 chia hết cho 8 với mọi n lẻ

HN
6 tháng 9 2016 lúc 17:29

Với mọi n là số tự nhiên lẻ, ta có thể biểu diễn n = 2k+1 với k là số tự nhiên

Ta có : \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=\left(2k+2\right)\left(2k+4\right)=2.\left(k+1\right).2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

mà (k+1)(k+2) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2

Suy ra \(n^2+4n+3\) chia hết cho 2x4 = 8 với mọi n lẻ

Bình luận (0)
SG
6 tháng 9 2016 lúc 17:27

Ta có: 

n2 + 4n + 3

= n2 + n + 3n + 3

= n.(n + 1) + 3.(n + 1)

= (n + 1).(n + 3)

Do n lẻ => n = 2.k + 1 (k thuộc N)

=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)

= (2.k + 2).(2.k + 4)

= 2.(k + 1).2.(k + 2)

= 4.(k + 1).(k + 2)

Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2

-=> 4.(k + 1).(k + 2) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 (đpcm)

Bình luận (3)
LH
6 tháng 9 2016 lúc 17:28

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)

\(\text{n = 2k + 1}\) (lẻ)

Do đó: \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)\)

\(=2\left(k+1\right)2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

Có: (k + 1)(k + 2) = 2k 

\(\Rightarrow4\left(2k+1\right)\left(k+2\right)=4.2k=8k⋮8\left(\text{đ}pcm\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
NG
Xem chi tiết
AM
Xem chi tiết
NL
Xem chi tiết
PN
Xem chi tiết
Ai
Xem chi tiết
H24
Xem chi tiết