Những câu hỏi liên quan
PB
Xem chi tiết
CT
19 tháng 6 2017 lúc 4:18

Thực hiện nhân đa thức và thu gọn

2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.

Bình luận (0)
MD
Xem chi tiết
PB
Xem chi tiết
CT
7 tháng 2 2018 lúc 7:48

Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.

Bình luận (0)
QP
Xem chi tiết
QP
3 tháng 3 2017 lúc 21:42

chứng minh với mọi n thuộc N* và m chẵn thì m^2^n-1 chia hết 2^ (n+2)

Bình luận (0)
RM
Xem chi tiết
H24
18 tháng 7 2018 lúc 21:08

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

Bình luận (0)
KT
18 tháng 7 2018 lúc 21:09

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

Bình luận (0)
TA
18 tháng 7 2018 lúc 21:12

a,  <=> 2n[ n(n+1)-n2-n+3)

<=> 2n( n2+n-n2-n+3)

<=> 6n chia hết cho 6 với mọi n nguyên

b, <=> 3n-2n2-(n+4n2-1-4n) -1

<=> 3n-2n2-n-4n2+1+4n-n-1

<=> 6n-6n2

<=> 6(n-n2)  chiiaia hhehethet cchchocho 6

c ,<=> m3-23-m3+m2-32-m2-18

<=>-35 => ko phụ thuộc vào biến

Bình luận (0)
TK
Xem chi tiết
TK
Xem chi tiết
QP
Xem chi tiết
TN
Xem chi tiết
LB
8 tháng 1 2017 lúc 8:30

Ta có: 24n+1 + 34m+1

= 24n.2 + 34m.3

= (24)n.2 + (34)m.3

= (...6)n.2 + (...1)m.3

= (...6).2 + (...1).3

= (...2) + (...3)

= ...5

Vì ...5⋮5 nên 24n+1+34m+1⋮5

Vậy 24n+1+34m+1⋮5 

Bình luận (0)
ST
8 tháng 1 2017 lúc 7:42

Ta có: 24n+1 + 34m+1

= 24n.2 + 34m.3

= (24)n.2 + (34)m.3

(...6)n.2 + (...1)m.3

(...6).2 + (...1).3

(...2) + (...3)

...5

Vì \(\overline{...5}⋮5\) nên \(2^{4n+1}+3^{4m+1}⋮5\)

Vậy \(2^{4n+1}+3^{4m+1}⋮5\) 

Bình luận (0)