Cho A = 1+3+32+....+32007
Hãy viết 2A + 1 dưới dạng một lũy thừa
cho A= 1+3+3^2+3^3+...+3^2012 Hãy viết 2A +1 dưới dạng lũy thừa
A = 1 + 3 + 32 + 33 + ... + 32012
3A = 3 + 32 + 33 + 34 + ... + 32013
3A - A = (3 + 32 + 33 + 34 + ... + 32013) - (1 + 3 + 32 + 33 + ... + 32012)
2A = 32013 - 1
=> 2A + 1 = 32013 - 1 + 1
=> 2A = 32013
Câu1chứng minh A là lũy thừa của 2
A=4+22+...+220
Câu2chứng inh B+1 viết được dưới dạng lũy thừa
B=1+2=22+...+23
Câu3cho A=3+32+...+3100
Tìm N biết 2.A+3=3N
Câu 4 A=2+22+23+...+260
Chứng minh A⋮3,7,15,21
Câu5 A=5+52+...+58
Chứng minh A là B của 30
Câu6 Chứng tỏ (1+2+3+...+n)⋮n+1
Câu 3:
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Mà: \(2A+3=3^N\)
\(\Rightarrow3^{101}-3+3=3^N\)
\(\Rightarrow3^{101}=3^N\)
\(\Rightarrow N=101\)
Vậy: ...
Câu 1:
\(A=4+2^2+...+2^{20}\)
Đặt \(B=2^2+2^3+...+2^{20}\)
=>\(2B=2^3+2^4+...+2^{21}\)
=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)
=>\(B=2^{21}-4\)
=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2
Câu 6:
Đặt A=1+2+3+...+n
Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)
=>\(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(A⋮n+1\)
Câu 5:
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
viết đa thức sau dưới dạng 1 lũy thừa
a) (2a^2+2a+1).(2a^2-2a+1)-(2a^2+1)
Viết các số sau dưới dạng lũy thừa của một số hữu tỉ
27 x 5 mũ 3 x 3 mũ 3 x 32 mũ -1 :125
\(27\cdot5^3\cdot3^3\cdot32^{-1}:125=3^3\cdot5^3\cdot3^3\cdot\dfrac{1}{32}:5^3=\dfrac{3^6}{32}=\dfrac{3^6}{2^5}\)
Viết các phép toán sau dưới dạng một lũy thừa với số mũ lớn hơn 1
a) 34 .275 . (32)3 | b) (23)4 .46 .32 |
c) 32019 .62019 : 2 2019 | d) 1258 . (52)4 |
a, 34.275.(32)3 = 34.(33)5.36 = 34.315.36 = 325
b, (23)4.46.32 = 212.212.25 = 229
c, 32019.62019: 22019 = 32019.32019.22019:22019 = (3.3)2019= 92019
d, 1258.(52)4 = (53)8.58 = 532
Viết 2A+1 dưới dạng 1 lũy thừa:
A= 1+3+32+33+34+.....+3100
cho A=1+2+2^2+2^3+...+2^200. Hãy viết A+1 dưới dạng một lũy thừa
B=3+3^2+3^3+...+3^2005.CMR:2B+3 là lũy thừa của 3
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
A=1+1+2+2^2+2^3+...+2^200=2=2+2+2^2+2^3+...+2^200=2^2+2^2+2^3+...+2^200
B chia hết cho 3=>2B chia hết cho 3, 3 chia hết cho 3 mà 2B+3 nên 2B+3 chia hết cho 3
Viết các số sau dưới dạng lũy thừa của 2:
1/32
\(\dfrac{1}{32}\) = 2-5
viết mỗi biểu thức sau dưới dạng 1 lũy thừa
a) (2a^2+2a+1).(2a^2-2a+1)-(2a^2+1)
b) 6x^2-48x-5
c) [(9x-1)+(1-5x)]^2