Những câu hỏi liên quan
KC
Xem chi tiết
NT
16 tháng 6 2023 lúc 12:52

=>16x+9y=840 và 210/x-210/y=7/4

=>16x=840-9y và 30/x-30/y=1/4

=>x=-9/16y+52,5 và (30y-30x)=xy/4

=>xy=120y-120x

=>y(-9/16y+52,5)=120y-120(-9/16y+52,5)

=>-9/16y^2+52,5y-120y+120(-9/16y+52,5)=0

=>-9/16y^2-67,5y-67,5y+6300=0

=>y=40 hoặc y=-280

=>x=30 hoặc x=210

Bình luận (0)
TL
Xem chi tiết
KN
6 tháng 5 2022 lúc 20:18

a, =5/14

b, = 1/6

c, = 3/2

d, = 8/7

Bình luận (0)
TS
6 tháng 5 2022 lúc 20:19

5/14

1/6

3/2

8/7

Bình luận (0)
H24
6 tháng 5 2022 lúc 20:19

a,5/14

b,1/6

c,3/2

d,8/7

Bình luận (0)
NT
Xem chi tiết
NT
21 tháng 7 2017 lúc 19:54

+) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)

Vậy \(A=\dfrac{2^{10}-1}{2^{10}}\)

+) \(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)

\(\Rightarrow\dfrac{1}{2}F=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+...+\dfrac{1}{380}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=\dfrac{1}{5}-\dfrac{1}{20}=\dfrac{3}{20}\Rightarrow F=\dfrac{3}{20}:\dfrac{1}{2}=\dfrac{3}{10}\)

Vậy \(F=\dfrac{3}{10}\)

+) \(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)

\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}=\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{25.28}\)

\(=\dfrac{4}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{25.28}\right)\)

\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)

Vậy \(G=\dfrac{2}{7}\)

Bình luận (0)
HN
21 tháng 7 2017 lúc 20:06

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(A=1-\dfrac{1}{2^{10}}=\dfrac{1024-1}{1024}=\dfrac{1023}{1024}\)

\(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)

\(=\dfrac{2}{30}+\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{380}\)

\(=\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{19.20}\)

\(=2\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{20}\right)=2.\dfrac{3}{20}=\dfrac{3}{10}\)

\(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)

\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}\)

\(=\dfrac{4}{4.7}+\dfrac{4}{7.10}+\dfrac{4}{10.13}+...+\dfrac{4}{25.28}\)

\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)

Bình luận (0)
KJ
Xem chi tiết
H24
11 tháng 1 2022 lúc 14:44

\(\dfrac{44}{105}\) <  \(\dfrac{x}{210}\) <\(\dfrac{158}{105}\) = \(\dfrac{88}{210}< \dfrac{x}{210}< \dfrac{316}{210}\) 
=> x = 89 -> 315

Bình luận (0)
V6
11 tháng 1 2022 lúc 14:45

=> x = 89 -> 315

Bình luận (0)
LD
Xem chi tiết
NT
23 tháng 5 2022 lúc 19:32

\(=\left(\dfrac{1}{21}+\dfrac{1}{210}+\dfrac{1}{2010}\right)\cdot\dfrac{10-6-3-1}{30}=0\)

Bình luận (0)
H24
23 tháng 5 2022 lúc 19:34

\(\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{10}-\dfrac{1}{30}\right)\times\left(\dfrac{1}{21}+\dfrac{1}{210}+\dfrac{1}{2010}\right)\)

\(=\left(\dfrac{10}{30}-\dfrac{6}{30}-\dfrac{3}{30}-\dfrac{1}{30}\right)\times\left(\dfrac{1}{21}+\dfrac{1}{210}+\dfrac{1}{2010}\right)\)

\(=0\times\left(\dfrac{1}{21}+\dfrac{1}{210}+\dfrac{1}{2010}\right)\)

\(=0\)

Bình luận (0)
NM
Xem chi tiết
HV
5 tháng 3 2018 lúc 20:49

Có:

\(\dfrac{n}{n+2}< \dfrac{n-1}{n}\)(Vì
\(n^2< n^2+n-2\forall n>2\))

Nên ta có

\(F=\dfrac{1}{3}.\dfrac{4}{6}....\dfrac{208}{201}\)

\(\Rightarrow F< \dfrac{1}{3}.\dfrac{3}{4}.\dfrac{6}{7}...\dfrac{207}{208}\)

\(\Rightarrow F^2< \dfrac{1.4.7...208}{3.6.9.12...210}.\dfrac{1.3.6.9...207}{3.4.7.10.208}\)

\(\Rightarrow F^2=\dfrac{1}{210}.\dfrac{1}{3}\)

\(\Rightarrow F^2=\dfrac{1}{630}< \left(\dfrac{1}{25}\right)^2\)

Vậy F\(< \dfrac{1}{25}\)

Bình luận (0)
NM
Xem chi tiết
LK
11 tháng 5 2022 lúc 15:14

X(X-1) =420

=> X^2 - X -420 = 0

=> (X+20)(X-21) =0

=> X+20 = 0 hoặc X-21 =0

=> X = -20 hoặc X = 21

Bình luận (0)
LL
Xem chi tiết
RA
Xem chi tiết
TT
4 tháng 1 2018 lúc 15:10

Ta có : x/10=63/210

=>x=(63:210).10=3

làm tương tự

=>y=40

=>t=24

Bình luận (2)