bật của đa thức Q=x^3-7x^4+x-11 là
Câu 1: cho 2 đa thức: P(x) = x^5 - 3x^2 + 7x^4 - 9x^3 + x^2 - 1414x Q(x) = 5x^4 - x^5 + x^2 - 2x^3 + 3x^2 - 1_4
a) sắp xếp theo các đa thức trên theo thứ tự giảm giần của biến
b)Tính P(x) + Q (x)
c)CMR: x=0 là nghiệm của đa thức P(x), nhưng không là nghiệm của đa thức Q(x)
Câu 1:
a) Ta có: \(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Ta có: \(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
Câu 1:
b) Ta có: P(x)+Q(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
Khi chia đa thức 2x4 + 8x3 – 7x2 + 8x – 12 cho x – 2 ta được thương là đa thức Q(x) có bậc là 3. Hãy tìm hệ số của x2 trong Q(x)
P(x) = x4-7x2+x-2x3+4x2+6x-2
Q(x) = x4- 3x-5x3+x+1+6x3
c, chứng tỏ x=2 là nghiệm của đa thức P(x) nhưng k phk là nghiệm của đa thức Q(x)
Cho hai đa thức :
f(x) = \(9-x^5+4x-2x^3+x^2-7x^4\)
g(x)=\(x^5-9+2x^3-7x^4+2x^3-3x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến
b) Tính tổng h(x) = f(x)+g(x)
c) Tìm nghiệm của đa thức h(x)
f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)
g(x)=\(x^5-7x^4+4x^3-3x-9\)
f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)
=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))
=\(-14x^4+2x^3+x^2+x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến :
\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)
b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)
=> h(x) = -14x4 + 2x3 + x2 +x
Giả sử \(-14x^4+2x^3+x^2+x\) =0
=> x(1+x+2 +\(x^2-14x^3\) )= 0 => x=0
Vậy nghiệm của h(x) =0
Cho 2 đa thức : P(x) = 3x^3 - 2x + 7 + x^2 + 7x + 8 và Q(x) = 2x^2 - 3x^3 + 4 - 3x^2 - 9
a , sắp xếp 2 đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến và chỉ rõ bậc , hệ số cao nhất hệ số tự do của mỗi đa thức
b , Tìm M(x) = P(x) + Q(x) và N(x) = P(x) - Q(x)
c , tìm nghiệm của đa thúc M(x) , chứng tỏ nghiệm đó k phải là nghiệm của đa thức N ( x)
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8
Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5
ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm
Xét M(x)=0 suy ra...........
N(x)=5x+3
Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Cho 2 đa thức: f (x)= \(9-x^5+4x-2x^3+x^2-7x^4\)
g (x)=\(x^5-9+2x^2+7x^4+2x^3-3x\)
a) Tính tổng h (x)= f (x) + g(x)
b) Tìm nghiệm của đa thức h (x)
Giải:
a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)
\(\Leftrightarrow h\left(x\right)=x+3x^2\)
b) Để đa thức h(x) có nghiệm
\(\Leftrightarrow h\left(x\right)=0\)
\(\Leftrightarrow x+3x^2=0\)
\(\Leftrightarrow x\left(1+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
Cho đa thức \(M=7x^6-5x^3y^3+y^5-x^3y^4+9\)bậc của đa thức M là ?
Cho 2 đa thức
P(x)= x5- 3x2+ 7x4- 9x3+ x2- 2x
Q(x)= 5x4- x5+ x2- 2x3+ 3x2- 3
a, Thu gọn và sắp xếp 2 đa thức đã cho theo lũy thừa giảm dần của biến
Tìm bậc của từng đa thức
Tìm P(x) + Q(x) ? Tìm bậc của đa thức tổng?
b, Chứng tỏ x= 0 là nghiệm của P(x) nhưng không là nghiệm của Q(x)
Tìm giá trị của m để đa thức sau là đa thức bậc 3 theo biến x:
\(f_{\left(x\right)}=\left(m^2-25\right)x^4+\left(20+4m\right)x^3+7x^2-9\)
Ta có : \(f_{\left(x\right)}=\left(m^2-25\right)x^4+\left(20+4m\right)x^3+7x^2-9\)
Để đa thức \(f_{\left(x\right)}\) là đa thức bậc \(3\) thì :
\(m^2-25=0\)
\(\Leftrightarrow m^2=25\)
\(\Leftrightarrow m=\pm5\)
Vậy để đa thức \(f_{\left(x\right)}\) là đa thức bậc 3 theo biến x thì \(m=\pm5\)