Những câu hỏi liên quan
HM
Xem chi tiết
NL
2 tháng 1 2019 lúc 16:49

\(lim\left(5n-\sqrt{25n^2-3n+5}\right)=lim\dfrac{25n^2-25n^2+3n-5}{5n+\sqrt{25n^2-3n+5}}\)

\(=lim\dfrac{3n-5}{5n+\sqrt{25n^2-3n+5}}=lim\dfrac{3-\dfrac{5}{n}}{5+\sqrt{25-\dfrac{3}{n}+\dfrac{5}{n^2}}}=\dfrac{3-0}{5+\sqrt{25-0+0}}=\dfrac{3}{10}\)

\(lim\dfrac{4n^5-3n^4-2n^3+7n-9}{-5n\left(3n^2-3n+1\right)\left(5-2n^2\right)}=lim\dfrac{\dfrac{4n^5-3n^4-2n^3+7n-9}{n^5}}{\dfrac{-5n}{n}\dfrac{\left(3n^2-3n+1\right)}{n^2}\dfrac{\left(5-2n^2\right)}{n^2}}\)

\(=lim\dfrac{4-\dfrac{3}{n}-\dfrac{2}{n^2}+\dfrac{7}{n^4}-\dfrac{9}{n^5}}{-5.\left(3-\dfrac{2}{n}+\dfrac{1}{n^2}\right).\left(\dfrac{5}{n^2}-2\right)}=\dfrac{4-0-0+0-0}{-5\left(3-0+0\right).\left(0-2\right)}=\dfrac{2}{15}\)

Bình luận (0)
HM
Xem chi tiết
NL
1 tháng 1 2019 lúc 16:34

\(lim\dfrac{5n\sqrt{2n^2-n}}{1+5n-3n^2}=lim\dfrac{5\sqrt{2-\dfrac{1}{n}}}{\dfrac{1}{n^2}+\dfrac{5}{n}-3}=\dfrac{5\sqrt{2-0}}{0+0-3}=\dfrac{-5\sqrt{2}}{3}\)

\(lim\dfrac{\sqrt{4n^2+n}-7n}{3n^2-1}=lim\dfrac{\sqrt{\dfrac{4}{n^2}+\dfrac{1}{n^3}}-\dfrac{7}{n}}{3-\dfrac{1}{n^2}}=\dfrac{\sqrt{0+0}-0}{3-0}=\dfrac{0}{3}=0\)

Bình luận (0)
DH
Xem chi tiết
NL
17 tháng 1 2021 lúc 13:22

\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)

\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)

\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)

\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)

Bình luận (0)
DB
15 tháng 3 2022 lúc 20:57

Lim 3.4n-2.13n/5n+6.13n

Bình luận (0)
H24
Xem chi tiết
NT
14 tháng 10 2023 lúc 9:44

1) \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(3n+5-\dfrac{3}{n}\right)}{-n\left(1-\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n+5-\dfrac{3}{n}}{-\left(1-\dfrac{5}{n}\right)}\)

\(=\left[{}\begin{matrix}-\infty\left(n\rightarrow+\infty\right)\\+\infty\left(n\rightarrow-\infty\right)\end{matrix}\right.\)

Bài 2,3 tương tự, bạn tự làm nhé!

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 11 2023 lúc 13:43

1: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5n-3}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)}{n\left(-1+\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\left[n\left(\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}\right)\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{5}{n}-\dfrac{3}{n^2}}{-1+\dfrac{5}{n}}=\dfrac{3+0-0}{-1+0}=\dfrac{3}{-1}=-3< 0\end{matrix}\right.\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-7n^2+4}{-n+5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{7n^2-4}{n-5}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(7-\dfrac{4}{n^2}\right)}{n\left(1-\dfrac{5}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\left[n\cdot\dfrac{\left(7-\dfrac{4}{n^2}\right)}{1-\dfrac{5}{n}}\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{7-\dfrac{4}{n^2}}{1-\dfrac{5}{n}}=\dfrac{7-0}{1-0}=7>0\end{matrix}\right.\)

Bình luận (0)
AN
Xem chi tiết
AH
29 tháng 1 2023 lúc 21:23

a.

\(A=\lim\frac{\sqrt[3]{n^6-7n^3-5n+8}}{n+12}=\lim \frac{\sqrt[3]{\frac{n^6-7n^3-5n+8}{n^3}}}{\frac{n+12}{n}}=\lim \frac{\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}}{1+\frac{12}{n}}\)

Ta thấy:

\(\lim\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}=\infty \)

\(\lim (1+\frac{12}{n})=1\)

Suy ra $A=\infty$

 

Bình luận (0)
AH
29 tháng 1 2023 lúc 21:35

b.

\(B=\lim\frac{1}{\sqrt{3n+2}-\sqrt{2n+1}}=\lim \frac{1}{\frac{3n+2-(2n+1)}{\sqrt{3n+2}+\sqrt{2n+1}}}=\lim \frac{\sqrt{3n+2}+\sqrt{2n+1}}{n+1}\)

\(=\lim \frac{\sqrt{\frac{3n+2}{n}}+\sqrt{\frac{2n+1}{n}}}{\frac{n+1}{\sqrt{n}}}=\lim \frac{\sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}}}{\sqrt{n}+\frac{1}{\sqrt{n}}}\)

Ta thấy:

\(\lim( \sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}})=\sqrt{3}+\sqrt{2}>0\)

\(\lim (\sqrt{n}+\frac{1}{\sqrt{n}})=\infty\)

$\Rightarrow B=\infty$

Bình luận (0)
AH
29 tháng 1 2023 lúc 21:38

c.

\(C=\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{4(\frac{3}{7})^n+7}{2(\frac{5}{7})^n+1}\)

Ta thấy:

\(\lim [4(\frac{3}{7})^n+7]=4.0+7=7\) với $|\frac{3}{7}|<1$

\(\lim [2(\frac{5}{7})^n+1]=2.0+1=1\) với $|\frac{5}{7}|<1$

$\Rightarrow C=\frac{7}{1}=7$

Bình luận (0)
NN
Xem chi tiết
AH
10 tháng 4 2020 lúc 22:32

1.

\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)

2.

\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)

3.

\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)

\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)

4.

\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)

5.

\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)

\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)

Bình luận (0)
H24
Xem chi tiết
DH
Xem chi tiết
MH
11 tháng 2 2022 lúc 5:22

\(b,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{2n+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}\)

\(=n\times\dfrac{2}{3}=\)+∞

Bình luận (0)
HT
10 tháng 2 2022 lúc 22:42

A, 7.b dương vô cực

Bình luận (0)
MH
11 tháng 2 2022 lúc 5:15

\(a,lim\dfrac{7n^2-3n}{n^2+2}\)

\(=lim\dfrac{7-\dfrac{3}{n}}{1+\dfrac{2}{n^2}}\)

\(=\dfrac{7-0}{1+0}=\dfrac{7}{1}=7\)

Bình luận (0)