Những câu hỏi liên quan
NL
Xem chi tiết
TH
12 tháng 7 2016 lúc 20:47
B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

Bình luận (1)
TX
Xem chi tiết
AN
8 tháng 8 2017 lúc 13:27

\(M=x^2+5y^2-4xy+2x-8y+2021\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)

\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)

Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Bình luận (0)
DT
Xem chi tiết
HH
Xem chi tiết
NM
30 tháng 10 2021 lúc 11:53

\(A=-2x^2+4xy-2y^2+4\left(x-y\right)-2-8y^2+8y+2019\\ A=\left[-2\left(x-y\right)^2+4\left(x-y\right)-2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\\ A=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\\ A_{max}=2020\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+\dfrac{1}{2}=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (1)
NC
Xem chi tiết
NT
12 tháng 3 2022 lúc 22:18

\(A=x^2-8x+16+x^2+4xy+4y^2+y^2+4y+4+2004\)

\(=\left(x-4\right)^2+\left(x+2y\right)^2+\left(y+2\right)^2+2004\ge2004\)

Dấu ''='' xảy ra khi x = 4 ; y = -2 

Bình luận (0)
ND
Xem chi tiết
MN
Xem chi tiết
KA
7 tháng 11 2021 lúc 15:25

Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 11 2021 lúc 20:15

ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)

Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)

do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)

Dấu "=" xảy ra khi x-2y+1=0 và y+1=0

ta có:

y+1=0=>y=0-1=>y=-1

thay y=-1 và x-2y+1=0

=>x-2.(-1)+1=0

=>x+2+1=0

=>x+2=-1

=>x=-1-2

=>x=-3

vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1

Bình luận (1)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
21 tháng 10 2023 lúc 19:20

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

Bình luận (0)
LA
Xem chi tiết
NL
31 tháng 10 2021 lúc 21:02

đặt biểu thức là A. Ta có:

A=x2 - 4xy + 5y2 - 2y + 28

  = (x2-4xy+4y2) + (y2-2y +1)+27

  =(x-2y)2 + (y-1)2 + 27

vì (x-2y)≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27

\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\)           ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)

Vậy, Min A=27 khi x=2; y=1

Bình luận (0)