Những câu hỏi liên quan
NT
Xem chi tiết
H24
24 tháng 6 2021 lúc 17:31

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

Bình luận (1)
H24
Xem chi tiết
YN
19 tháng 4 2021 lúc 16:35

Vì 105 là số nguyên lẻ nên 2x+5y+1 và 2020lxl+y+x2+x là số lẻ

=> 5y chẵn => y chẵn

Có:x2+x=x(x+1) là số chẵn nên 2020lxl lẻ

=>x=0

Thay x=0 vào phương trình (2x+5y+1)(2020lxl+y+x2+x)=105 ta được:

 \(\left(5y+1\right)\left(y+1\right)=105\Leftrightarrow5y^2+6y-104=0\)

Do \(y\in Z\)nên ta tìm ra y=4

Vậy phương trình có nghiệm là \(\left(x;y\right)=\left(0;4\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
MH
Xem chi tiết
TC
7 tháng 1 2022 lúc 20:36

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

Bình luận (0)
TC
7 tháng 1 2022 lúc 21:12

Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.

Bài 4:

Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ

Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.

Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn

\(\Rightarrow q=2\). Lúc này ta có:

\(p^2+2^p=r\)

+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)

+Xét p>3. Ta có:

\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)

\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)

\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số

\(\Rightarrow r\) là hợp số, không phải SNT, loại.

Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài

 

Bình luận (0)
TC
7 tháng 1 2022 lúc 21:22

Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.

Nếu 2n-1 là SCP thì ta có

\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)

Do đó 2n+1 không là SCP

\(\Rightarrowđpcm\)

Bình luận (0)
NQ
Xem chi tiết
LP
28 tháng 6 2023 lúc 7:25

a) \(x^2-3xy+3y^2=3y\)

Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:

\(k^2y^2-3ky^2+3y^2=3y\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).

Khi \(y=0\) \(\Rightarrow x=0\).

Khi \(k^2y-3ky+3y=3\)

\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)

Ta lập bảng giá trị:

\(y\) 1 3 -1 -3
\(k^2-3k+3\) 3 1 -3 -1
\(k\) 0 hoặc 3 1 hoặc 2 vô nghiệm vô nghiệm
\(x\) 0 (loại) hoặc 3 (nhận) 3 (nhận) hoặc 6 (nhận)    

Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)

b) \(x^2-2xy+5y^2=y+1\)

\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)

\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)

Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)

Bình luận (0)
AT
Xem chi tiết
H24
Xem chi tiết
H24
31 tháng 10 2018 lúc 8:45

a) \(2x+13y=156\) (1)

.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)

Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)

Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)

b)Biến đổi phương trình thành: \(2xy-4x=7-y\)

\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )

Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên

hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!

Bình luận (0)
H24
31 tháng 10 2018 lúc 8:57

c) \(3xy+x-y=1\)

\(\Leftrightarrow9xy+3x-3y=3\)

\(\Leftrightarrow9xy+3x-3y-1=2\)

\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)

\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)

Bình luận (0)
WB
Xem chi tiết
MA
24 tháng 10 2016 lúc 17:59

Vì 105 là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|}+x^2+x+y\) phải là các số lẻ.

Từ \(2x+5y+1\) là số lẻ mà \(2x+1\) là số lẻ nên 5y là số chẵn suy ra y là số chẵn.

\(2^{\left|x\right|}+x^2+x+y\) là số lẻ mà \(x^2+x=x\left(x+1\right)\) là tích của hai số nguyên liên tiếp nên là số chẵn, y cũng là số chẵn nên \(2^{\left|x\right|}\) là số lẻ. Điều này chỉ xảy ra khi \(x=0\)

Thay x=0 vào phương trình đã cho, ta được:

\(\left(5y+1\right)\left(y+1\right)=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\) 

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(5y+26\right)\left(y-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{26}{5}\left(\text{loại}\right)\\y=4\left(TM\right)\end{cases}}\)

Vậy phương trình có nghiệm nguyên \(\left(x;y\right)=\left(0;4\right)\)

Bình luận (0)
TN
24 tháng 10 2016 lúc 18:04

Chứng minh rằng không tồn tại số nguyên n thỏa mãn $2014^{2014}+1\vdots n^{3}+2012n$ - Số học - Diễn đàn Toán học

Bình luận (0)
TN
24 tháng 10 2016 lúc 18:07

d.violet.vn//uploads/resources/present/3/652/138/preview.swf

Bình luận (0)
DH
Xem chi tiết
NL
11 tháng 11 2021 lúc 20:36

\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)

\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)

\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)

\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)

Phương trình ước số cơ bản

 

Bình luận (0)
DV
Xem chi tiết