\(32^{-x}\cdot16^x=2048\)
Tìm x biết
\(32^{-x}\cdot16^x=2048\)
ta có công thức như sau :
\(a^{-x}=?\)
lời giải công thức này như sau :
\(a^{-x}=\left(\frac{1}{a}\right)^x\)
vậy bài cũng gải tương tự
\(32^{-x}.16^x=\left(\frac{1}{32}\right)^x.\left(16^x\right)\)
\(=\left(\frac{16}{32}\right)^x=\left(\frac{1}{2}\right)^x=2^{-x}\)
mà \(2048=2^{11}\)
\(\Rightarrow-x=11\)
\(\Leftrightarrow x=-11\)
vậy \(x=-11\)
\(\Rightarrow\)\(\left(\frac{1}{32}\right)^x\cdot16^x=2048\)
\(\Rightarrow\)\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-11}\)
\(\Rightarrow\)\(x=-11\)
Bài 1 : Tìm n thuộc Z , biết
a)\(\dfrac{1}{9}\cdot27^n=3^n\)
b)\(3^{-2}\cdot3^4\cdot3^n=3^7\)
c) \(32^{-n}\cdot16^n=2048\)
a) \(\dfrac{1}{9}.27^n=3^n\)
\(\Leftrightarrow\dfrac{1}{9}=3^n:27^n\)
\(\Leftrightarrow\dfrac{1}{9}=\left(\dfrac{3}{27}\right)^n\)
\(\Leftrightarrow\dfrac{1}{9}=\left(\dfrac{1}{9}\right)^n\)
\(\Leftrightarrow n=1\)
b) \(3^{-2}.3^4.3^n=3^7\)
\(\Leftrightarrow3^2.3^n=3^7\)
\(\Leftrightarrow3^n=3^7:3^2\)
\(\Leftrightarrow3^n=3^5\)
\(\Leftrightarrow n=5\)
c) \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\left(2^5\right)^{-n}.\left(2^4\right)^n=2^{11}\)
\(\Leftrightarrow2^{-5n}.2^{4n}=2^{11}\)
\(\Leftrightarrow2^{-n}=2^{11}\)
\(\Leftrightarrow n=-11\)
Tìm x
a) |x-2| + |x| + 3x = 81
b)\(^{32^{-x}\cdot16^x=1024}\)
Tìm x: \(32^{-x}.16^x=2048\)
Tìm n∈Z, biết :
a) \(\frac{1}{9}\cdot27^n=3^n\)
b) \(3^{-2}\cdot3^4\cdot3^n=3^7\)
c) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
d) \(32^{-n}\cdot16^n=2048\)
2x+2 - 22 = 96
32-x . 16x = 2048
Tìm số tự nhiên x:
a/ 2^(-1)*2^n+4*2^n=9*2^5
b/ 32^(-n)*16^n=2048
Tìm x thuộc Z
a)\(32^{-n}.16^n=2048\)
b)\(2^{-1}.2^n+4.2^n=9.2^5\)
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
Tính bằng 3 cách
1357 x 2048 + 357 x 2048
C1) 1357 x 2048 + 357 x 2048 = 2779136 + 731136 = 3510272
C2) 1357 x 2048 + 357 x 2048 = 2048 x (1357 + 357) = 3510272
C3) 1357 x 2048 + 357 x 2048
= 1357 x 2048 + (1357 - 1000) x 2048
= 1357 x 2048 + 1357 x 2048 -1000 x 2048
= 2048 x (1357 + 1357 - 1000)
= 2048 x 1714
= 3510272
:) 1357 x 2048 + 357 x 2048
= 1357 x 2048 + (1357 - 1000) x 2048
= 1357 x 2048 + 1357 x 2048 -1000 x 2048
= 2048 x (1357 + 1357 - 1000)
= 2048 x 1714
= 3510272
\(C1:1357\cdot2048+357\cdot2048\)
\(=2779136+731136\)
\(=3510272\)
\(C2:2048\cdot\left(1357+357\right)\)
\(2048\cdot1714\)
\(=3510272\)
\(C3:\left(1000+357\right)\cdot2048+357\cdot2048\)
\(1000\cdot2048+357\cdot2048+357\cdot2048\)
\(2048000+2\cdot\left(357\cdot2048\right)\)
\(2048000+1462272\)
\(3510272\)