Tìm x, biết:a) 6252565472=+x b) (4x - 3)4 = (4x - 3)2 ... giá trị của: a) M =
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
1, Tìm số tự nhiên n để phân số: 5n-7/2n-3 có giá trị lớn nhất
2, Cho biểu thức: A=x2+1; B=3-4x
a,Tìm x biết:A+B=0
b, Tìm số nguyên x để 1/A+B có giá trị nguyên
c,Tìm gia trị lớn nhất và nhỏ nhất của biêu thức B/A
cho C(x)=-8+4x3-4x4
a) tìm nghiệm của C(x)
b)tìm x để đa thức M(x)=C(x)+x2 có giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
Bài tập 2
Câu 1: Phân tích đa thức thành nhân tử: a. 2x2 - 3x - 2
b. 4x(x - 2) + 3(2 - x)
c. 27x3 + 8 d. x2 + 2x - y2 + 1
Câu 2 (2 điểm): Tìm giá trị của x, biết:
a. 9x2 + 6x - 3 = 0
b. x(x - 2)(x + 2) - (x + 2)(x2 - 2x + 4) = 4
Câu 3 (2 điểm): Rút gọn và tính giá trị biểu thức:
a. A = x(x + y) - 5(x + y) với x = 1, y = 2
b. B = 3x(x2 - 3) + x2(4 - 3x) - 4x2 + 1 tại x = 1/9
Câu 4: Cho hình thang vuông ABCD (∠A = ∠D = 90o) và CD = 2AB. Kẻ DH vuông góc với AC (H ∈ AC). Gọi M là trung điểm của HC, N là trung điểm của DH. Chứng minh rằng:
a. MN ⊥ AD
b. ABMN là hình bình hành.
c. ∠BMD = 90o
Câu 5: 1) Cho biểu thức: A = (2x - 3)2 - (x + 1)(x + 5) + 2 Rút gọn và tìm giá trị nhỏ nhất của A.
2) Cho B = n2 - 27n2 + 121. Tìm số tự nhiên n để B là số nguyên.
Câu 2:
a: \(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow x^3-4x-x^3-8=4\)
hay x=-3
Bài 1:
1) phân tích đa thức thành nhân tử
a) 3x^3-12x^2+12x
b) x^2-25+4xy+4y^2
c) 4x^3-x
d) x^2-x+2y-4y^2
2) tìm giá trị của x biết:
a) 3x(x-1)+x-1=0
b) x(2x+1)-4x^2+1=0
Bài 2: cho tam giác ABC vuông tại A (AB<AC), D là trung điểm của AB. Kẻ DE vuông góc với AB ( E∈BC). Đường thẳng qua E song song với AB cắt AC tại F. Chứng minh tứ giác ADEF là hình chữ nhật. ( vẽ cả hình ạ)
Bài 1:
a. $3x^3-12x^2+12x=3x(x^2-4x+4)=3x(x-2)^2$
b. $x^2-25+4xy+4y^2=(x^2+4xy+4y^2)-25=(x+2y)^2-5^2=(x+2y-5)(x+2y+5)$
c. $4x^3-x=x(4x^2-1)=x[(2x)^2-1^2]=x(2x-1)(2x+1)$
d. $x^2-x+2y-4y^2=(x^2-4y^2)-(x-2y)=(x-2y)(x+2y)-(x-2y)=(x-2y)(x+2y+1)$
Bài 2:
a. $3x(x-1)+x-1=0$
$\Leftrightarrow (x-1)(3x+1)=0$
$\Leftrightarrow x-1=0$ hoặc $3x+1=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{-1}{3}$
b. $x(2x+1)-4x^2+1=0$
$\Leftrightarrow x(2x+1)-(4x^2-1)=0$
$\Leftrightarrow x(2x+1)-(2x-1)(2x+1)=0$
$\Leftrightarrow (2x+1)[x-(2x-1)]=0$
$\Leftrightarrow (2x+1)(-x+1)=0$
$\Leftrightarrow 2x+1=0$ hoặc $-x+1=0$
$\Leftrightarrow x=\frac{-1}{2}$ hoặc $x=1$
Bài 3:
Ta thấy: $EF\parallel AB; AB\perp AC\Rightarrow EF\perp AC$
Vậy $DE\perp AB, EF\perp AC\Rightarrow \widehat{EDA}=\widehat{EFA}=90^0$
Tứ giác $ADEF$ có: $\widehat{A}=\widehat{EDA}=\widehat{EFA}=90^0$ nên là hcn (đpcm)
Cho hai biểu thức A = xx -2 - x +1x + 2 + 4x-4 và B = , với , x≠4 1) Tính giá trị của biểu thức B khi x = . 2) Rút gọn biểu thức M = A : (B + 1) 3) Tìm giá trị nhỏ nhất của biểu thức M.
tìm x biết:
a)2(x+3)+x(3+x)=0
b)(2x-3)^2-(4x-6)(x+2)+x^2+4x+4=0
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(2\left(x+3\right)+x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
<=> (x+3)(x+2)=0
TH1 x+3=0 <=> x=-3
TH2 x+2=0 <=> x=-2
Vậy....
Bài 1: Rút gọn rồi tính giá trị biểu thức:
a) A = 4x2.(-3x2 + 1) + 6x2.( 2x2 – 1) + x2 khi x = -1
b) B = x2.(-2y3 – 2y2 + 1) – 2y2.(x2y + x2) khi x = 0,5 và y = -1/2
Bài 2: Tìm x, biết:
a) 2(5x - 8) – 3(4x – 5) = 4(3x – 4) +11
b) 2x(6x – 2x2) + 3x2(x – 4) = 8
c) (2x)2(4x – 2) – (x3 – 8x2) = 15
Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
P = x(2x + 1) – x2(x+2) + x3 – x +3
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
\(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\\ P=2x^2+x-x^3-2x^2+x^3-x+3\\ P=3\left(đfcm\right)\)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x