Cho ABC cân tại A, Dlà trung điểm của BC.a) Chứng minh: ADB = ADC;b) TừDvẽDEAB tại E, DFAC tại F. Chứng minh: DEF cân;c) Gọi I là giao điểm của BF và CE. Chứng minh rằng: A, I, D thẳng hàng.
Cho \(\Delta ABC\) có AB = AC. D là trung điểm của BC.
a) Chứng minh: \(\Delta ADB\) = \(\Delta ADC\) và AD là tia phân giác của \(\widehat{BAC}\).
b) Vẽ \(DC\perp AD\) tại M. Trên cạnh Ac lấy điểm N sao cho AN = AM. Chứng minh: \(\Delta AMD\) = \(\Delta AND\) và \(DC\perp AN\).
c) Gọi K là trung điểm của NC. Trên tia DK lấy điểm E sao cho K là trung điểm của DE. Chứng minh: \(\Delta KCD\) = \(\Delta KNE\).
d) Chứng minh: MN // BC và 3 điểm M, N, E thẳng hàng.
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN
Xét ΔAMD và ΔAND có
AM=AN
\(\widehat{MAD}=\widehat{NAD}\)
AD chung
Do đó: ΔAMD=ΔAND
=>\(\widehat{AMD}=\widehat{AND}\)
mà \(\widehat{AMD}=90^0\)
nên \(\widehat{AND}=90^0\)
=>DN\(\perp\)AC
c: Xét ΔKCD và ΔKNE có
KC=KN
\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)
KD=KE
Do đó: ΔKCD=ΔKNE
d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Ta có: ΔKCD=ΔKNE
=>\(\widehat{KCD}=\widehat{KNE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên NE//DC
=>NE//BC
ta có: NE//BC
MN//BC
NE,MN có điểm chung là N
Do đó: M,N,E thẳng hàng
Cho ABC cân tại A, D là trung điểm của BC. a) Chứng minh: ADB = ADC; b) Từ D vẽ DE AB tại E, DF AC tại F. Chứng minh: DEF cân; c) Gọi I là giao điểm của BF và CE. Chứng minh rằng: A, I, D thẳng hàng.
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: ΔADB=ΔADC
=>\(\widehat{BAD}=\widehat{CAD}\)
ΔADB=ΔADC
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
=>DE=DF
=>ΔDEF cân tại D
c: Ta có: ΔAED=ΔAFD
=>AE=AF
Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC
\(\widehat{EBC}=\widehat{FCB}\)
BC chung
Do đó: ΔEBC=ΔFCB
=>\(\widehat{ECB}=\widehat{FBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: D là trung điểm của BC
AD\(\perp\)BC tại D
Do đó: AD là đường trung trực của BC(2)
Từ (1),(2) suy ra A,D,I thẳng hàng
cho tam giác ABC cân tại A (góc A nhọn, AB > BC). Gọi D là trung điểm của BC.
a) Chứng minh ▵ADB = ▵ADC.
b) Gọi E là trung điểm AB. Qua A kẻ đường thẳng song song với BC cắt DE tại K.
Chứng minh: AK = DC.
C) CK cắt AD tại F. Chứng minh AC//KD và EF ⏊ AD.
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
=>ΔABD=ΔACD
b: Xét ΔEAK và ΔEBD có
góc EAK=góc EBD
EA=EB
góc AEK=góc BED
=>ΔEAK=ΔEBD
=>AK=BD=CD
c: AK//CD và AK=CD
=>AKDC là hbh
=>KD//AC và AD cắt KC tại trung điểm của mỗi đường
=>F là trung điểm chung của AD và KC
Xét ΔABD có AE/AB=AF/AD
nên EF//BD
=>EF vuông góc AD
Cho tam giác ABC cân tại A có đường phân giác AD.
a) Chứng minh tam giác ADB = tam giác ADC, điểm D là gì.
b) Chứng minh đường phân giác AD và hai đường trung tuyến BE, CF của tam giác tam giác ABC đồng qui tại một điểm
Bài 16: Cho ABC có AB = AC, gọi D là trung điểm của BC.
a) Chứng minh : ∆ADB = ∆ADC, từ đó suy ra AD là tia phân giác của \(\widehat{BAC}\)
b) Chứng minh : AD BC
c) Trên cạnh AB và cạnh AC lần lượt lấy hai điểm M, N sao cho AM = AN. Gọi K là giao điểm của AD và MN. Chứng minh MN // BC.
d) Gọi O là trung điểm của BM, trên tia đối của tia OD lấy điểm P sao cho OD =
OP. Chứng minh ba điểm M, N, P thẳng hàng.
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
Cho tam giác ABC cân tại a.Điểm D là trung điểm của BC a) chứng minh tam giác ADB bằng tam giác ADC b) vẽ BE vuông góc với AC (E thuộc AC).Gọi F là giao điểm của AD và BE chứng minh đường thẳng CF vuông góc AB
Cho △ABC cân tại A và H là trung điểm cuả BC.
a). Chứng minh △ABH = △ACH
b). Từ H kẻ HE ⊥ AB tại E, HK ⊥ AC tại K. Chứng minh △AEK cân.
a: Xet ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xet ΔAEH vuông tại E và ΔAKH vuông tại K có
AH chung
góc EAH=góc KAH
=>ΔAEH=ΔAKH
=>AE=AK
Bài 1: Cho ABC cân tại A. Gọi E, F, H lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh AE = AF.
b) Chứng minh AEHF là hình thoi.
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.
a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.
b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.