Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VD
Xem chi tiết
LD
13 tháng 12 2021 lúc 19:41

vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)

đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2)        thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)

do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
H24
29 tháng 7 2018 lúc 13:29

Đề sai rồi nha bạn  : .... thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) ( sửa lại )

                                   Bài làm

Ta có \(a^2=bc=\frac{a}{c}=\frac{b}{a}\)

áp dụng dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

hok tốt .

Bình luận (0)
PP
29 tháng 7 2018 lúc 13:35

Ta có: a2 = bc 

          => a.a = b.c

          => \(\frac{a}{c}=\frac{b}{a}\)=> \(\frac{a+b}{c+a}\)\(\frac{a-b}{c-a}\)

Hình như bn ghi sai đề

Bình luận (0)
NA
Xem chi tiết
LH
7 tháng 8 2016 lúc 13:06

\(a^2=bc\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Bình luận (0)
NT
Xem chi tiết
SG
28 tháng 9 2016 lúc 11:49

Do \(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)

Đặt \(\frac{a}{b}=\frac{c}{a}=k\Rightarrow\begin{cases}a=b.k\\c=a.k\end{cases}\)

Ta có:

\(\frac{a+b}{a-b}=\frac{b.k+b}{b.k-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+a}{c-a}=\frac{a.k+a}{a.k-a}=\frac{a.\left(k+1\right)}{a.\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

Bình luận (0)
PT
10 tháng 12 2017 lúc 17:32

ta có :a^2=bc

⇒a.a=bc

⇒a/b=c/a

⇒a/c=b/a

Áp dụng tính chất dãy tỉ số bằng nhau a/c=b/a=a+b/c+a=a-b/c-a

⇒a+b/c+a=a-b/c-a

⇒a+b/a-b=c+a/c-a(điều phải chứng minh)

Bình luận (0)
TQ
Xem chi tiết
LM
6 tháng 10 2019 lúc 20:11

bạn nhân ra hết cho mk

Bình luận (0)
TQ
6 tháng 10 2019 lúc 20:50

thanks bạn nhiều nha

Bình luận (0)
H24
Xem chi tiết
NH
8 tháng 3 2021 lúc 20:30

tên sai kìa,EKAWADA CONAN mà

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24
17 tháng 12 2019 lúc 14:53

Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{ab}{bc}\)(Áp dụng tính chất a = b => a2 = b2 = ab)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Trừ khử b trên tử và dưới mẫu còn a/c)

Bình luận (0)
 Khách vãng lai đã xóa
EC
Xem chi tiết
CD
20 tháng 12 2019 lúc 18:26

\(\frac{a}{b}=\frac{b}{c}\)\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

mà \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết