Tìm điều kiện của x để biểu thức có nghĩa
\(\sqrt{25-4x^2}\)
Tìm điều kiện để biểu thức sau có nghĩa:
\(\sqrt{x^2-3x+7}\)
Ta có
\(\sqrt{x^2-3x+7}\)
\(=\sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}}\)
\(=\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}\)
Vì \(\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{19}{4}>0\end{cases}\)\(\Rightarrow\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}>0\)
Vậy biểu thức có ngĩa với mọi x
a, Tìm điều kiện của x biểu thức có nghĩa: \(A=\sqrt{x-1}+\sqrt{3-x}\)
b, Tính \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)
a) A= \(\sqrt{x-1}+\sqrt{3-x}\)
ĐK: \(\hept{\begin{cases}x-1\text{ ≥ }0\\3-x\text{ ≥ }0\end{cases}}\)=> \(\hept{\begin{cases}x\text{ ≥ }1\\x\text{≤}3\end{cases}}\)
Vậy 1≤x≤3
b) \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)
\(=\frac{3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\frac{3+\sqrt{5}}{4}-\frac{\sqrt{5}-1}{4}\)
\(=\frac{3+1}{4}=1\)
a, 1 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3
b, quy đồng mẫu ta được kết quả bằng 1
Ông Nguyễn Mạnh Khang ơi con cần cách làm còn kết quả con ra rồi
Cho biểu thức: B=\(\left[\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right].\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện của x để giá trị của biểu thức được xác định
b, Chứng minh rằng: Khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị
a, ĐKXĐ: \(x\ne1;x\ne-1\)
b, Với \(x\ne1;x\ne-1\)
\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)
=> ĐPCM
Cho biểu thức A= 3/ n-2. Tìm điều kiện của n để A là phân số?
ĐK: mẫu số khác 0 và 3 không chia hết cho n-2
tức n\(\ne\)2 và n-2 \(\ne\)3k (k\(\in\)Z) <=> n\(\ne\)3k+2
Vậy, để A là phân số thì n\(\ne\)2 và n\(\ne\)3k+2 (k\(\in\)Z).
Để A là phân số \(\Rightarrow n-2\ne0\)
\(\Rightarrow n\ne2\)
Ntt Hồng chú ý: số nguyên cũng là phân số nhé
Cho biểu thức 𝐴 = 4
𝑛-1
(𝑛 ∈ 𝑍)
a) Số nguyên n phải có điều kiện gì để A là phân số?
b) Tìm tất cả các giá trị nguyên của n để A là số nguyên.
giúp mik vs
a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.
b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
a) 2-n khác 0
2n khác 4
=> n khác 2
b) 2n+1 chia hết 2n-4
2n-4+5 chia hết 2n-4
=> 2n-4+5/2n-4=2n-4/2n-4+5/2n-4=1+5/2n-4
=> 5 chia hết 2n-4
=> 2n-4 là Ư(5)=( 5;-5;1;-1)
=> 2n=(9;-1;5;3)
=> x ko thỏa mãn
a) Để A là phân số thì n phải có điều kiện gì?
b) Tìm tất cả các số nguyên n để giá trị của A là một số nguyên
a, Để A là phân số thì n + 1 khác 0
=> n khác -1
b, Để A là số nguyên thì 5 chia hết cho n + 1
=> n + 1 thuộc {1; -1; 5; -5}
=> n thuộc {0; -2; 4; -6}
Vậy...
Với điều kiện các biểu thức đều có nghĩa, đẳng thức nào sau đây là sai?
A. cos x 1 + sin x = 1 - sin x c o s x
B. 1 - cos x sin x = sin x 1 + c o s x
C. cos 2 x + sin 2 x = 1
D. cos x - s i n x ( cos x + sin x ) = 1
Ta có: cos x - s i n x . cos x + sin x = cos 2 x - sin 2 x = cos 2 x
Do đó, đẳng thức D sai
Chọn D.
Cho A= x-9/3+√x ( lưu ý / là phân số) a) Tìm giá trị của x để biểu thức A có nghĩa b) Rút gọn A c) tính giá trị biểu thức A khi x=0;x=-1;x=16 d) Tìm x nguyên để A nguyên
\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)
a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)
c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)
Với x=-1 (ktm đk)
Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)
d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương
cho phân thức: \(\dfrac{2x^2-4x+8}{x^3+8}\)
a, Với điều kiện nào của x thì giá trị của phân thức xác định
b, Hãy rút gọn phân thức
c, Tính giá trị của phân thức tại x=2
d, Tìm giá trị của x để giá trị của phân thức bằng 2
a, ĐKXĐ: x3+8≠0 ⇔ x≠-2
b, \(\dfrac{2x^2-4x+8}{x^3+8}\)=\(\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)=\(\dfrac{2}{x+2}\)
c, vì x=2 thỏa mãn đkxđ nên khi thay vào biểu thức ta có:
\(\dfrac{2}{2+2}\)=\(\dfrac{1}{2}\)
d, \(\dfrac{2}{x+2}\)=2 ⇔ 2x+4=2 ⇔ 2x=-2 ⇔ x=-1 (TMĐKXĐ)
Nên khi phân thức bằng 2 thì x=-1