KT

Cho biểu thức:   B=\(\left[\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right].\dfrac{4x^2-4}{5}\)

a, Tìm điều kiện của x để giá trị của biểu thức được xác định

b, Chứng minh rằng: Khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị

LV
9 tháng 6 2021 lúc 15:56

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
ZH
Xem chi tiết
KT
Xem chi tiết