cho n thuộc N* p là nguyên tố >3 Cmr trong 2 số p^n + 1 và 2p^n + 1 có ít nhất 1 số là hợp số
giúp mình với nhé ,
cho n thuộc N ,p là số nguyên tố >3
CMR trong 2 số p^n +1 và 2*p^n +1 có ít nhất 1 số là hợp số
cảm ơn trước ạ
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
câu 1: tìm BCNN của 3số tự nhiên liên tiếp
câu 2 : tìm x, y thuộc N sao cho . 20x0y04 chia hết cho 13
câu 3: CMR: P và 2P + 1 là số nguyên tố < 3 và 4P + 1 là hợp số
câu 4: CMR p + 6 ; p + 12 ; p + 18 là số nguyên tố
câu 5: a = 1 + 2 + 3 + ... + n và b = 2n + 1 CMR (a,b) = 1
vì n và n+1 là 2 số tự nhiên liên tiếp
=) n + n+1 chia hết cho 2 (1)
vì n, n+1 và n+2 là 3 stn liên tiếp
=) n+n+1+n+2 chia hết cho 3 (2)
Từ (1) và (2) =) n+n+1+n+2 chia hết cho 6
hay BCNN của n+n+1+n+2 là 6
vậy ....
Bài 1: Cho P là số nguyên tố, P > 3 . Hỏi P^2 + 2018 là số nguyên tố hay hợp số?
Bài 2: Cho n là số tự nhiên lớn hơn 3 sao cho n ko chia hết cho 3. CMR n^2 - 1 và n^2 + 1 ko đồng thời là số nguyên tố.
Bài 3: Cho P là số nguyên tố, P > 3 sao cho 8P^2 - 1 là số nguyên tố. CMR 8P^2 + 1 là hợp số.
Bài 4: Cho P là số nguyên tố, P > 3 sao cho P + 2 là số nguyên tố. CMR P + 1 chia hết cho 6.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
1) Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
2) Tìm số tự nhiên n có 4 chữ số biết rằng n là số chính phương và n là bội của 147
3)Tìm số tự nhiên n nhỏ nhất để các phân số sau đề tới giản: 7/n+9; 8/n+10; 9/n+11;...; 100/n+102
vbvcnvbnvvb
1.tìm tất cả những giá trị n thuoocjN sao cho 3^n+4n+1 chia ết cho 8
2.cho p và 8p^2+1 là những số nguyên tố.CMR 8p^2+2p+1cungx là 1 số nguyên tố
3.tìm tất cả những số nguyên tố có dạng (2^(2^n)) +5 n thuộc N
4.hãy tìm số ngto p sao cho p^2 là uoc của (5^(p^2)) +1
Chứng minh rằng với mọi số tự nhiên n thì UCLN (21n + 4 ;14n + 3 ) = 1
CMR : Nếu p là số nguyên tố lớn hơn 3 và 2p + 1 cũng là số nguyên tố thì 4p + 1 là hợp số .
Cho các số p = b^c + a, q = a^b + c, r = c^a + b (a, b, c thuộc N*) là các số nguyên tố. CMR 3 số p, q, r có ít nhất 2 số bằng nhauCho các số p = b^c + a, q = a^b + c, r = c^a + b (a, b, c thuộc N*) là các số nguyên tố. CMR 3 số p, q, r có ít nhất 2 số bằng nhau
CMR: Nếu 2^n - 1 là số nguyên tố thì 2^n + 1 là hợp số ( với n thuộc N và n>2)