Những câu hỏi liên quan
SC
Xem chi tiết
KN
2 tháng 8 2019 lúc 17:19

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Bình luận (0)
KN
2 tháng 8 2019 lúc 17:22

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

Bình luận (0)
H24
Xem chi tiết
TL
30 tháng 5 2021 lúc 10:21

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

Bình luận (0)
NH
Xem chi tiết
NH
19 tháng 8 2020 lúc 15:23

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

Bình luận (0)
 Khách vãng lai đã xóa
NH
19 tháng 8 2020 lúc 15:24

thanks bạn nhìu

Bình luận (0)
 Khách vãng lai đã xóa
LD
19 tháng 8 2020 lúc 15:40

A = x( x - 6 ) + 10

A = x2 - 6x + 10

A = ( x2 - 6x + 9 ) + 1

A = ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 - 2x + 9y2 - 6y + 3

B = ( x2 - 2x + 1 ) + ( 9y2 - 6y + 1 ) + 1

B = ( x - 1 )2 + ( 3y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
MA
Xem chi tiết
DV
19 tháng 6 2016 lúc 18:43

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

Bình luận (0)
VC
Xem chi tiết
LL
5 tháng 10 2021 lúc 20:45

\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

Bình luận (3)
NT
5 tháng 10 2021 lúc 20:45

\(B=x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

Bình luận (0)
PA
5 tháng 10 2021 lúc 20:53

cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều

 

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Bình luận (0)
HN
Xem chi tiết
MT
6 tháng 7 2015 lúc 15:03

A=x^2-x+1 

=x2-2.x.1/2+1/4+3/4

=(x-1/2)2+3/4 > 0 với mọi x ( vì (x-1/2)2\(\ge\)0)

vậy A luôn dương với mọi x

Bình luận (0)
NU
29 tháng 3 2020 lúc 16:17

A=x^2-x+1

 =x^2-2x1/2+1/4-1/4+1

 =(x-1/2)^2+3/4 >0 

Vậy : A luôn dương vs mọi x

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết
DD
16 tháng 12 2018 lúc 11:22

A=x(x-6)+10

=x2-6x+10

=x2-6x+32+1

=(x-3)2+1

Mà (x-3)2≥0 với mọi x

⇒ (x-3)2+1>0 với mọi x

Bình luận (0)