Tìm GTNN của biểu thức:/
a)A=/x-1/2/
b)B=/x+3/4/+1
c)x^2+/y-1/-3
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Bài 1:a)Tìm GTNN của biểu thức
A=|x-1|+3
B=|x-7|-4
b)Tìm GTNN của biểu thức
C=-|x-3|+2
Bài 2:Tính giá trị biểu thức A=x+y biết |x|=5 và |y|=12
HƯỚNG DẪN:Tìm x,y và chia ra các trường hợp (x,y).Sau đó thay x,y để tính A
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3
3. Tìm GTNN của biểu thức :
a) A= | x + 2 | + 3
b) B= | x - y + 1 | + | y - 2 |
c) C= | x - 1 | + | x - 3 |
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ( với a, b dương), tìm GTNN của biểu thức: \(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\) với x, y là 2 số dương và x+y=1
\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).
Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)
1) Chứng minh biểu thức sau không phụ thuộc vào biến
a) A = ( x-1)^3 - (x+4) ( x^2 - 4x + 16 ) + 3x(x-1)
b) B = ( x+y - 1)^3 - (x+y+1)^3 + 6(x+y)
2) Tìm GTNN của biểu thức
A = x^2 + 6x + 11
Tìm giá trị lớn nhất của biểu thức
B = 4-x^2 - x
1.
a) \(A=\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(A=\left(x^3-3x^2+3x-1\right)-\left(x^3+64\right)+\left(3x^2-3x\right)\)
\(A=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(A=\left(x^3-x^3\right)+\left(-3x^2+3x\right)+\left(3x-3x\right)+\left(-1-64\right)\)
\(A=-65\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
b) \(B=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)
\(B=\left[\left(x+y-1\right)-\left(x+y+1\right)\right].\left[\left(x+y-1\right)^2+\left(x+y-1\right).\left(x+y+1\right)+\left(x+y+1\right)^2\right]+6\left(x+y\right)^2\)
\(B=\left(x+y-1-x-y-1\right).\left[\left(x+y\right)^2-2\left(x+y\right).1+1+\left(x+y\right)^2-1+\left(x+y\right)^2+2\left(x+y\right).1+1\right]+6\left(x+y\right)^2\)
\(B=-2.\left(x^2+2xy+y^2-2x-2y+1+x^2+2xy+y^2-1+x^2+2xy+y^2+2x+2y+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2\right)-2+6\left(x+y\right)^2\)
\(B=-6\left(x+y\right)^2+6\left(x+y\right)^2-2\)
\(B=-6\left[\left(x+y\right)^2-\left(x+y\right)^2\right]-2\)
\(B=-2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
2. \(A=x^2+6x+11\)
\(A=x^2+2x.3+3^2+2\)
\(A=\left(x+3\right)^2+2\)
Ta có: \(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+2\ge2\)
\(\Rightarrow Min_A=2\Leftrightarrow x=-3\)
\(B=4-x^2-x\)
\(B=-x^2-x+4\)
\(B=-x^2-x-\dfrac{1}{4}+\dfrac{17}{4}\)
\(B=-\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{17}{4}\)
\(B=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\)
Ta có: \(-\left(x+\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)
\(\Rightarrow Max_B=\dfrac{17}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
i
111111 | 1111 |
111111 | 1111 |
111111 | 1111 |
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
dhgxkkkkkkkkkkkkkkkkkkkkk
a> Cho x + y = 1. Tìm GTNN của biểu thức: x^3 + y^3 + x^2 + y^2
b> Cho x + y + z = 3. Tìm GTLN của biểu thức xy + yz + zx
c> Tìm GTNN của biểu thức M= x^2 + 6y^2 + 14z^2 - 8yz + 6zx - 4xy
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Bài 3:
a: \(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
b: \(\Leftrightarrow4n^3-2n^2-6n+3+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{1;0\right\}\)