Mn giúp mk câu nài vs :
2 (x-2 ) +4 =12
các pịn ơi sửa cho mk câu nài vs :)))
1)I suggested that he buy a alarm clock, because of the fact that never does he come to class on time.
dịch cho mk câu nài vs :O
2)các anh có thể NHƯỜNG lại phòng cho tôi được không ?
1)I suggested that he buy a alarm clock, because of the fact that never does he come to class on time.
-> I suggested that he should buy/buy an alarm clock, because of the fact that he never come to class on time.
2)các anh có thể NHƯỜNG lại phòng cho tôi được không ?
-> Can you (boys) make/give the room for me ?
Mk đag cần gấp mn giúp mk vs ạ !
Câu 1 Tìm x , biết
a)\(\sqrt{4\text{x}^2+4\text{x}+1}=6\)
b)\(\sqrt{4\text{x}^2-4\sqrt{7}x+7=\sqrt{7}}\)
c\(\sqrt{x^2+2\sqrt{3}x+3}=2\sqrt[]{3}\)
d)\(\sqrt{\left(x-3\right)^2}=9\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)
d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)
mn giúp mk với chút 7h mk phải ik hc rồi nma mk chưa giải đc 4 câu này
tìm x,y biết 1. (3x +2).(5-x^2) = 0
2. -2x - 2/3 . (3/4 - 1/8 x) = (-1/2)^3
3.1/12 : 4/21 = 3 và 1/2 : (3x-2)
4 .x-1/x+2 = 4/5 với (x khác -2)
\(1,\left(3x+2\right)\left(5-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\5-x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\-x^2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\pm\sqrt{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{2}{3};-\sqrt{5};\sqrt{5}\right\}\)
\(2,-2x-\dfrac{2}{3}\left(\dfrac{3}{4}-\dfrac{1}{8}x\right)=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow-2x-\dfrac{1}{2}+\dfrac{1}{12}x=-\dfrac{1}{8}\)
\(\Leftrightarrow-2x+\dfrac{1}{12}x=-\dfrac{1}{8}+\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{23}{12}=\dfrac{3}{8}\)
\(\Leftrightarrow x=-\dfrac{9}{46}\)
Vậy \(S=\left\{-\dfrac{9}{46}\right\}\)
\(3,\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\)
\(\Leftrightarrow\dfrac{1}{12}.\dfrac{21}{4}=\dfrac{7}{2}.\dfrac{1}{3x-2}\)
\(\Leftrightarrow\dfrac{7}{16}=\dfrac{7}{6x-4}\)
\(\Leftrightarrow6x-4=7:\dfrac{7}{16}\)
\(\Leftrightarrow6x-4=16\)
\(\Leftrightarrow x=\dfrac{10}{3}\)
Vậy \(S=\left\{\dfrac{10}{3}\right\}\)
\(4,\dfrac{x-1}{x+2}=\dfrac{4}{5}\left(dk:x\ne-2\right)\)
\(\Rightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Rightarrow5x-5=4x+8\)
\(\Rightarrow x=13\left(tmdk\right)\)
Vậy \(S=\left\{13\right\}\)
câu 1:
a) 4x-5=23 b) |-2x|=5x+14 c) \(\dfrac{x+1}{x-1}\)-\(\dfrac{1}{x+1}\)=\(\dfrac{x^2+2}{x^2-1}\)
mn giúp mk vs, mk cần gấp
Câu 1 :
a. \(4x-5=23\\ \Leftrightarrow4x=23+5\\ \Leftrightarrow4x=28\\ \Leftrightarrow x=7\)
b.
|-2x|=5x+14
Nếu - 2x > 0 => x < 0 thì |-2x|= - 2x, ta có pt: -2x = 5x+14
<=> - 2x = 5x + 14
<=> - 2x - 5x = 14
<=> - 7x = 14
<=> x = - 2 (thoã mãn)
Nếu - 2x < 0 => x > 0 thì |-2x|= = -(- 2x) = 2x.
Ta có pt: 2x = 5x + 14
<=> - 3x = 14
<=> x = \(-\dfrac{14}{3}\)
Vậy pt có nghiệm x = - 2
c) \(\dfrac{x+1}{x-1}-\dfrac{1}{x+1}=\dfrac{x^2+2}{x^2-1}\\ ĐKXĐ:x\ne1;x\ne-1\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow x^2+x+x+1-x+1=x^2+2\\ \Leftrightarrow x^2+x+x-x-x^2=2-1-1\\ \Leftrightarrow x=0\left(nhận\right)\)
\(a,4x-5=23\)
\(\Leftrightarrow4x=23+5\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(b,\left|-2x\right|=5x+14\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5x+14\\2x=-5x-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-14=0\\7x+14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=14\\7x=-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{14}{3}\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{14}{3};-2\right\}\)
\(c,\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)-x+1-x^2-2}{x^2-1}=0\)
\(\Leftrightarrow x^2+x+x+1-x+1-x^2-2=0\)
\(\Leftrightarrow x=0\)
Vậy \(S=\left\{0\right\}\)
a) \(4x-5=23\)
\(4x=23+5\)
\(4x=28\)
\(x=7\)
b) \(\left|-2x\right|=5x+14\)
\(\Leftrightarrow\) \(-2x-5=14\)
\(\Leftrightarrow\) \(-7x=14\)
\(\Leftrightarrow\) \(x=-2\)
\(\Leftrightarrow\) \(-2x=-\left(5x+14\right)\)
\(\Leftrightarrow\) \(-2x=-\left(5x-14\right)\)
\(\Leftrightarrow\) \(-2x+5x=-14\)
\(\Leftrightarrow\) \(3x=-14\)
\(\Leftrightarrow\) \(x=-\dfrac{14}{3}\) \(\left(\text{vô lí}\right)\)
\(\Leftrightarrow x=-2\)
c) \(\dfrac{x+1}{x-1}-\dfrac{1}{x+1}=\dfrac{x^2+2}{x^2-1}\)
\(\Leftrightarrow\) \(\dfrac{x+1}{x-1}+\dfrac{-1}{x+1}=\dfrac{x^2+2}{\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)+\left(-1\right)\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2+x+2=x^2+2\)
\(\Leftrightarrow x+2=2\)
\(\Leftrightarrow x=0\)
Câu 1 : Tính
A = -7/12 + 11/8 - 5/9
B = 1/7 - 8/7 : 8-3 : 3/4 . ( -22 )
C = 1,4 . 15/49 - ( 4/5 + 2/3 ) : 11/5
Câu 2 : Tìm x
a, -11x/12 + 3/4 = -1/6
b, 3 - ( 1/6 - x ) .2/3 = 2/3
Câu 3 : 1/-2 < x/2 + <_ 0
Câu 4 : So sánh
1/2.3 và 1/2 - 1/3
Giúp mk vs mn ơi
dễ mk bn cho mình hỏi nhé câu 4 là \(\frac{1}{2\cdot3}\)hay là\(\frac{1}{2}\cdot3\)
Cau 1
A=17/72 B=16 C=-5/21
Cau 2
a) x=1 b) -10/3
Phân tích đa thức thành nhân tử
a, x^2 +6x+9-y^2
b, x^3-3x^2 -4x+12
c, 3x^2-3xy-5x+5y
d, x^3+y^3+2x^2-2xy+2y
e, x^4-2x^3+2x-1
f, x^3-4x^2+12x-27
g, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
h, 8-27x^3
i, (x+y)^2-(x-y)^2
k, x^6-y^6
p/s mn giúp mk vs ạ . lm đc câu nào thì lm. ai giúp mk thì mk thấy câu tl của ng đó ở đâu mk đều tick hết
a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)
b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)
c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)
d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2
= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)
e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)
f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)
g) chắc là 3xyz
= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)
h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)
i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy
k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).
Câu 2 mn giúp mk vs mk cần gấp lắm
4:
a: 7/10
b: 6/5=12/10
7/2=35/10
8/25=32/100
11/50=22/100
23/125=204/1000
17/20=85/100
41/200=205/1000
Giúp mk vs mk cần gấp
X2.(x2+4)-X2 - 4
Thanks mn
x2.( x2 + 4 ) - x2 - 4
= x2.( x2 + 4 ) - ( x2 + 4 )
= ( x2 + 4 ).( x2 - 1 )
= ( x2 + 4 ) .( x - 1 ).( x + 1 )
TL:
\(x^2\left(x^2+4\right)-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2+4\right)\)