Những câu hỏi liên quan
DV
Xem chi tiết
AH
31 tháng 12 2022 lúc 21:35

Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$

$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$

$=1-\frac{1}{21}=\frac{20}{21}$

$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$

Bình luận (0)
DV
Xem chi tiết
H24
31 tháng 12 2022 lúc 14:08

14,26651106

Bình luận (0)
NL
Xem chi tiết
GC
11 tháng 5 2015 lúc 19:13

\(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{19\times21}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)

                                                    \(=1-\frac{1}{21}=\frac{20}{21}\)

đúng cái nhé

Bình luận (0)
NH
Xem chi tiết
NH
17 tháng 12 2017 lúc 9:57

a, Đặt :

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+..............+\dfrac{1}{19.21}\)

\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{19.21}\)

\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{19}-\dfrac{1}{21}\)

\(\Leftrightarrow2A=1-\dfrac{1}{21}\)

\(\Leftrightarrow2A=\dfrac{20}{21}\)

\(\Leftrightarrow A=\dfrac{10}{21}\)

Bình luận (0)
NH
17 tháng 12 2017 lúc 10:03

b, \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...........+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(\Leftrightarrow2A=1-\dfrac{1}{2n+1}\)

\(\Leftrightarrow2A=\dfrac{2n}{2n+1}\)

\(\Leftrightarrow A=\dfrac{n}{2n+1}\)

Bình luận (0)
HB
Xem chi tiết
KB
7 tháng 3 2018 lúc 13:52

Ta có;\(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+....+\frac{4}{19\times21}\)

\(=2\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{19\times21}\right)\)

\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)

\(=2\times\left(1-\frac{1}{21}\right)=2\times\frac{20}{21}=\frac{40}{21}\)

Bình luận (0)
AK
7 tháng 3 2018 lúc 13:53

4/1 x 3 + 4/ 3 x 5 + 4/ 5 x 7 + ....+ 4/ 17 x 19 + 4/ 19 x 21

= 2 x ( 2/ 1 x 3 + 2/ 3 x 5 + 2/ 5 x 7 + ...+ 2/ 17 x 19 + 2/ 19 x 21 ) 

= 2 x ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ...+ 1/17 - 1/19 + 1/19 - 1/21 ) 

= 2 x ( 1 - 1/21 ) 

= 2 x  20/21

= 40/21 

Chúc bạn học giỏi !!! 

Bình luận (0)
H24
7 tháng 3 2018 lúc 13:58

Đặt \(K=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{17.19}+\frac{4}{19.21}\)

\(\Leftrightarrow K=\left(\frac{4}{1}-\frac{4}{3}\right)+\left(\frac{4}{3}-\frac{4}{5}\right)+\left(\frac{4}{5}-\frac{4}{7}\right)+\left(\frac{4}{7}-\frac{4}{9}\right)+...+\left(\frac{4}{19}-\frac{4}{21}\right)\)

\(\Leftrightarrow K=\frac{4}{1}-\frac{4}{3}+\frac{4}{3}-\frac{4}{5}+\frac{4}{5}-\frac{4}{7}+\frac{4}{7}-\frac{4}{9}+...+\frac{4}{19}-\frac{4}{21}\)

\(\Leftrightarrow K=\frac{4}{1}-\frac{4}{21}=\frac{84}{21}-\frac{4}{21}=\frac{80}{21}\)

Bình luận (0)
LH
Xem chi tiết
NH
18 tháng 7 2016 lúc 15:14

c) 

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)

   \(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\frac{20}{21}\)

   \(=\frac{10}{21}\)

Bình luận (0)
NN
18 tháng 7 2016 lúc 15:04

\(A\)\(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)

Bình luận (0)
NH
18 tháng 7 2016 lúc 15:09

a)

 \(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{49.50}\)

    \(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

    \(=\frac{1}{3}-\frac{1}{50}\)

    \(=\frac{47}{150}\)

b) 

 \(B=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{19.20}\)

    \(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)

    \(=3.\left(1-\frac{1}{20}\right)\)

    \(=3.\frac{19}{20}\)

    \(=\frac{57}{20}\)

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 8 2017 lúc 14:27

\(A=\frac{3}{1.3}+\frac{3}{3.5}+.....+\frac{3}{19.21}\)

\(A=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+......+\frac{2}{19.21}\right)\)

\(A=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{19}-\frac{1}{21}\right)\)

\(A=\frac{3}{2}.\left(1-\frac{1}{21}\right)\)

\(A=\frac{3}{2}.\frac{20}{21}\)

\(A=\frac{10}{7}\)

Bình luận (0)
TP
27 tháng 8 2017 lúc 14:27

Ta có:

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{19.21}\)

\(\Rightarrow A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)

\(\Rightarrow A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{21}\right)=\frac{2}{3}.\frac{20}{21}=\frac{40}{63}\)

Bình luận (0)
HN
27 tháng 8 2017 lúc 14:29

A = \(\frac{3}{1x3}+\frac{3}{3x5}+\frac{3}{5x7}+.......+\frac{3}{19x21}\)

A : 3 = \(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+.........+\frac{1}{19x21}\)

A : 3 = \(\frac{1}{1}+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-.........+\frac{1}{19}-\frac{1}{21}\)

=> A : 3 = \(\frac{1}{1}-\frac{1}{21}\)\(\frac{21}{21}-\frac{1}{21}=\frac{20}{21}\)

=> A = \(\frac{20}{21}x3=\frac{60}{21}=\frac{20}{7}\)

Bình luận (0)
LH
Xem chi tiết
H24
22 tháng 10 2023 lúc 15:39

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{13\times15}+\dfrac{2}{15\times17}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{17}\)

\(=1-\dfrac{1}{17}\)

\(=\dfrac{16}{17}\)

Bình luận (0)
NN
22 tháng 10 2023 lúc 15:07

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{15\cdot17}\)

\(=2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{17}\)

\(=2-\dfrac{1}{17}\)

\(=\dfrac{33}{17}\)

Bình luận (0)
NN
Xem chi tiết
ML
25 tháng 7 2017 lúc 21:06

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(\Leftrightarrow A=\frac{3}{2}.\frac{100}{101}\)

\(\Leftrightarrow A=\frac{150}{101}\)

Bình luận (0)
ND
26 tháng 7 2017 lúc 7:08

A=3/1x3+3/3x5+3/5x7+.....+3/99x101

A=3x(1/1x3+1/3x5+1/5x7+.....+1/99x101)

A=3/2x(2/1x3+2/3x5+2/5x7+.....+2/99x101)

A=3/2x(1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

A=3/2x(1/1-1/101)

A=3/2x(101/101-1/101)

A=3/2x100/101

A=150/101.

Vậy A=150/101

Bình luận (0)