Những câu hỏi liên quan
DH
Xem chi tiết
LB
5 tháng 7 2023 lúc 16:45

81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405

Bình luận (0)
DM
5 tháng 7 2023 lúc 16:45

Không chia hết đâu bạn ơi

 

 

Bình luận (0)
NH
5 tháng 7 2023 lúc 17:09

A =    817 + 279 + 913

A = \(\overline{..1}\) + \(\left(27^4\right)^2.27\) + \(\left(9^2\right)^6.9\)

A = \(\overline{..1}\) + \(\overline{...1}\).27 + \(\overline{...1}\).9

A = \(\overline{..1}\) + \(\overline{...7}\) + \(\overline{..9}\)

A = \(\overline{...7}\)  ⇒ A không chia hết cho 5 ⇒ A không chia  hết cho 405 xem lại đề bài đi em

Bình luận (0)
CT
Xem chi tiết
NH
7 tháng 10 2024 lúc 7:08

1; 87 - 218 ⋮ 14

    A = 87 - 218 

   A = - 131 (là số lẻ); 14 là số chẵn 

   Số lẻ không bao giờ chi hết cho số chẵn

Bình luận (0)
NH
7 tháng 10 2024 lúc 7:09

2; 76 + 75 - 913 ⋮ 55

    B = 76 + 75 - 913 

    B = 151 - 913

    B =  - 762 không chia hết cho 5 nên không chia hết cho 55

Bình luận (0)
NH
7 tháng 10 2024 lúc 7:13

3; 817 - 279  - 913 ⋮ 405

   C = 817 - 279  -913

   C = 538 - 913

   C  = - 375 ;

375 < 405 không thể chia hết cho 405 nên - 375 không chia hết cho  405

 

   

   

Bình luận (0)
LP
Xem chi tiết
TH
19 tháng 2 2022 lúc 20:45

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

Bình luận (0)
NT
19 tháng 2 2022 lúc 20:41

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

Bình luận (0)
NL
19 tháng 2 2022 lúc 21:33

a)           7^0 = 0 ; 7^1=7 ; 7^2 = 49 ; 7^3 = 343 ; 7^4=2401 ; 7^5 = 16807 ;.....

⟹ 7 có số mũ là số chẵn thì thường có chữ số tận cùng là 1,9

7^6 =......9 ; 7^5=......7 ; 7^4=......1

⟹ ....9 +.....7-....1=5

mà 55=5.11⟹ 7^6 +7^5-7^4 : 5 thì : 55

mà số chia hết cho 5 thì có tận cùng là 0,5 .phéptính 7^6+7^5=7^4 có tận cùng là 5 ⟹ 7^6+7^5-7^4 : 55 

vậy 7^6+7^5-7^4 : 55

 

Bình luận (0)
MS
Xem chi tiết
NH
7 tháng 10 2024 lúc 7:04

d; 109 + 108 + 107 ⋮ 555

     109 + 108 + 107

  = 217 + 107

  = 324 < 555

  109 + 108 + 107 < 555 (không thể chia hết cho 555)

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 7:06

e; 817 - 279 - 913 ⋮ 45

     817 - 279  -913 

    = 538 - 913 

    = - 375 

      3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45

Bình luận (0)
NL
Xem chi tiết
QV
21 tháng 9 2017 lúc 12:49

de ma

Bình luận (0)
VP
Xem chi tiết
AH
12 tháng 4 2023 lúc 19:16

Lời giải:

$3x^2+x=4y^2+y$

$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$

$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$

$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$

Gọi $d=(x-y, 4x+4y+1)$

Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.

Từ $(1); (3)\Rightarrow y\vdots d$

Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$

$\Rightarrow d=1$

Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.

Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.

Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$

$=(x+y)^2t^2=[t(x+y)]^2$ là scp

Ta có đpcm.

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 9 2023 lúc 21:30

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

Bình luận (0)
MS
Xem chi tiết
NT
25 tháng 10 2021 lúc 21:58

a: \(\dfrac{x^2+2xy+y^2}{x+y}=x+y\)

b: \(\dfrac{64x^3+1}{4x+1}=16x^2-4x+1\)

Bình luận (0)
MD
Xem chi tiết
LL
28 tháng 9 2021 lúc 8:47

a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)=\left(x+y\right)^2:\left(x+y\right)=x+y\)

b) \(=\left[\left(5x+1\right)\left(25x^2-5x+1\right)\right]:\left(5x+1\right)=25x^2-5x+1\)

c) \(=\left(y-x\right)^2:\left(y-x\right)=y-x\)

Bình luận (0)
NM
28 tháng 9 2021 lúc 8:47

\(a,=\left(x+y\right)^2:\left(x+y\right)=x+y\\ b,=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)=25x^2-5x+1\\ c,=\left(y-x\right)^2:\left(y-x\right)=y-x\)

Bình luận (0)
PP
Xem chi tiết
H24
7 tháng 3 2021 lúc 20:02

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

Bình luận (1)