Tìm GTNN của biểu thức:
\(\left|x-1.5\right|+\left|2.5-x\right|=0\)
Tìm GTNN của biểu thức c =\(\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2.5\)
Tìm GTNN của biểu thức:
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\left|x-1,5\right|+\left|2,5+x\right|=0\)
\(\Rightarrow\left|x-1,5\right|\ge0\)
\(\Rightarrow\left|2,5-x\right|\ge0\)
Nên : + ) \(x-1,5=0\)
\(\Leftrightarrow x=1,5\)
+ ) \(2,5-x=0\)
\(\Leftrightarrow x=2,5\)
Ta có : \(1,5+2,5\ne0\)
Vậy x vô nghiệm .
tìm GTNN của biểu thức: A= \(\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)
\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)
\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)
Tìm gtnn của biểu thức
\(A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
Ta có tính chất :
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)
\(\rightarrow A\ge\left|4x-8\right|\)
Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :
\(\rightarrow A\ge0\forall x\in R\)
Dấu "= " xảy ra khi :
\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{min}=0\Leftrightarrow x=2\)
\(\left|x-1.5\right|+\left|2.5-x\right|=0\)
Cho biểu thức E = \(\frac{\left(X+2007\right)\left(X+2008\right)}{X}\) với X > 0
Tìm giá trị của X để biểu thức E đạt GTNN và tìm GTNN đó?
AI GIÚP MK VS Ạ??
Tìm GTNN của biểu thức:
\(A=\dfrac{\left(x+5\right)\left(x-1\right)}{\left(x+3\right)^2}\)
Đặt \(x+3=t\ne0\Rightarrow x=t-3\)
\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)
\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)
Tìm GTNN của biểu thức :
\(A=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x+2\right)^2}\)
Tìm GTNN của biểu thức: \(A=\left|2x-1\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)