so sánh\(\left(-32\right)^9va\left(-18\right)^{13}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh
\(\left(-32\right)^9và\left(-18\right)^{13}\)
329 = (25)9 = 245 < 252 = (24)13=1613<1813
=> (-32)9 > (-18)13
So Sánh : \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
Ta có: \(32^{27}=\left(2^5\right)^{27}=2^{135}\)
\(16^{39}=\left(2^4\right)^{39}=2^{156}\)
mà \(2^{135}< 2^{156}\)
nên \(32^{27}< 16^{39}\)
mà \(16^{39}< 18^{39}\)
nên \(32^{27}< 18^{39}\)
\(\Leftrightarrow-32^{27}>-18^{39}\)
\(\Leftrightarrow\left(-32\right)^{27}>\left(-18\right)^{39}\)
So sánh các số sau:
d)\(\left(-32\right)^9\)và\(\left(-18\right)^{13}\)
e)\(\left[\frac{-25}{46}\right]\)và\(\left(\frac{-25}{46}\right)^{2005}\)
d, ta có :(-32)9=-(329) ;(-18)13=-(1813)
329=32\(\times\)328=32\(\times\)(322)4=32\(\times\)10244=32\(\times\)1024\(\times\)10243
1813=18\(\times\)1812=18\(\times\)(183)4=18\(\times\)58324=18\(\times\)5832\(\times\)58323
18\(\times\)5832 >16\(\times\)5832=32\(\times\)2916>32\(\times\)1024 =58323>10243
nên 1813>329
vậy (-18)13 <(-32)9
(-32)9=-(329)
(-18)13=-(1813)
329<369
ta có :369=(2\(\times\)18)9=29\(\times\)189
vì 184>164mà 164=(24)4=216
mà 216>29
\(\Rightarrow\)184>29
\(\Rightarrow\)184\(\times\)189>29\(\times\)189
\(\Rightarrow\)1813>369mà 369 >329
\(\Rightarrow\)1813>329
\(\Rightarrow\)(-18)13<(-32)9
So sánh các lũy thừa sau:
\(\left(-32\right)^9\) và \(\left(-18\right)^{13}\)
\(\left(-32\right)^9\)và \(\left(-18\right)^{13}\)
Hãy so sánh 2 lũy thừa trên
thấy (-32)^9 và (-18)^13 là 2 số âm
trước tiên ta so sánh: 32^9 và 18^13
32^9 = (2^5)^9 = 2^45 = 2^13.2^32
18^13 = 2^13.9^13 = 2^13.3^26
Có: 8 < 9 => 2^3 < 3^2 => (2^3)^5 < (3^2)^5 => 2^15 < 3^10 và 2 < 3^3
=> 2.2^15 < 3^3.3^10 => 2^16 < 3^13 => (2^16)^2 < (3^13)^2 => 2^32 < 3^26
=> 2^13.2^32 < 2^13.3^26 => 2^45 < 2^13.9^13 => 32^9 < 18^13
=> -32^9 > -18^13 => (-32)^9 > (-18)^13
so sanh
\(\left(\frac{1}{243}\right)^9va\left(\frac{1}{83}\right)^{13}\)
So sánh
a,\(\left(-\frac{1}{16}\right)^{100}\) và \(\left(-\frac{1}{2}\right)^{500}\)
b,\(\left(-32\right)^9\) và \(\left(-16\right)^{13}\)
c,\(\left(-32\right)^9\) và \(\left(-18\right)^{13}\)
Hiện tại mình đang cần gấp giúp mk nha!
\(\text{a) }\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Ta co
\(16^{100}< 32^{100}\)
\(\Rightarrow\frac{1}{16^{100}}>\frac{1}{32^{100}}\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
a.
Ta có:
\(\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Vì \(\frac{1}{16^{100}}>\frac{1}{32^{100}}\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b.
Ta có:
\(\left(-32\right)^9=\left[-\left(2^5\right)\right]^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=\left[-\left(2^4\right)\right]^{13}=-\left(2^{52}\right)\)
Vì \(-\left(2^{45}\right)>-\left(2^{52}\right)\Rightarrow\left(-32\right)^9>\left(-16\right)^{13}\)
#Chúc bạn học tốt!#
So sánh:
\(\left(-32\right)^{27}và\left(-18\right)^{39}\)
(-32)^27>(-18)^39 nha bn Cá là trong violympic lun
Giúp tui với =)))
So sánh : \(\left(-32\right)^{27}va`\left(-18\right)^{39}\)
hồ trần nhi nói rứa thì coi như ko biết còn gì nữa