Những câu hỏi liên quan
QD
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
H24
2 tháng 9 2017 lúc 15:42

câu b đk x>= -1/4

\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)

\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)

\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)

\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)

\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)

\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)

Bình luận (3)
VH
Xem chi tiết
CM
Xem chi tiết
SG
2 tháng 11 2016 lúc 11:10

\(F=\frac{4.\sqrt{x}+15}{2.\sqrt{x}+9}=\frac{4.\sqrt{x}+18-3}{2.\sqrt{x}+9}=\frac{2.\left(2.\sqrt{x}+9\right)}{2.\sqrt{x}+9}-\frac{3}{2.\sqrt{x}+9}=2-\frac{3}{2.\sqrt{x}+9}\)

Có: \(2.\sqrt{x}+9\ge9\Rightarrow\frac{3}{2.\sqrt{x}+9}\le\frac{1}{3}\)

\(\Rightarrow F=2-\frac{3}{2.\sqrt{x}+9}\ge\frac{5}{3}\)

Dấu "=" xảy ra khi \(2.\sqrt{x}=0\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

Vậy Min F = \(\frac{5}{3}\)khi x = 0

Bình luận (0)
H24
2 tháng 11 2016 lúc 11:16

để tìm \(min\) của \(F\) ta xét \(GTNN\)của\(\sqrt{x}\)

\(GTNN\)của \(\sqrt{x}\)là \(0\)

thay \(0\)vào căn của biểu thức ta có:

\(F=\frac{4.\sqrt{0}+15}{2.\sqrt{0}+9}=\frac{15}{9}\approx1,6666666666667\)

vậy \(min\)của \(F\)\(\approx1,6\)

Bình luận (0)
ND
Xem chi tiết
NT
2 tháng 2 2022 lúc 20:44

undefined

Bình luận (0)
SD
Xem chi tiết
AV
Xem chi tiết
AV
Xem chi tiết
AV
8 tháng 1 2018 lúc 19:06

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)

Bình luận (0)