Tìm x
2x+4x+6x+...+10x=5100
1 x2x 3x 4x 5x 6x 7x 8x 9x...x1000= ????
4x^2+6x+1=10x tìm x
4x^2+6x+1=10x tìm x
\(4x^2+6x+1=10x\\ \Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Cho biểu thức sau: D = ( x + 2 ) 2 x . 1 − x 2 x + 2 − x 2 + 6 x + 4 x .
a) Tìm điều kiện xác định của biểu thức D;
b) Rút gọn biểu thức D;
c) Tìm giá trị x để D có giá trị lớn nhất.
a) x ≠ 0 , x ≠ − 2
b) Ta có D = x 2 - 2x - 2.
c) Chú ý D = - x 2 - 2x - 2 = - ( x + 1 ) 2 - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.
Bài1 Tìm GTLN của biểu thức
A=-x^2-10x+1
B=-4x^2-6x-5
C=-16x^2+8x-1
Bài2 Tìm GTNN của biểu thức
A=4x^2-8x+5
B=25x^2-10x-3
C=49x^2-28x+1
giúp mình với T-T
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
Tìm giá trị nhỏ nhất của các biểu thức sau:
A = \(x^2-4x+6\).
B = \(25x^2+10x-3\).
C = \(5-6x+4x^2\).
A= x2-4x+6 = (x-2)2+2 ≥ 2
Dấu "=" xảy ra ⇔ x=2
B = 25x2+10x-3 = (5x+1)2-4 ≥ -4
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5}\)
C = 5-6x+4x2 = \(\left(\dfrac{3}{2}-2x\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
A= 2x^2-4x+ 4+2
A=(x-2)2 + 2
A có giá trị nhỏ nhất khi (x-2)2 =0
x-2 =0
x=2
B, C tự làm :>
B=(5x)2+2.5.x-1-2
B=(5x-1)2-2
B có giá trị nhỏ nhất khi (5x-1)2=0
5x-1=0
x=1/5
C=(2x)2-2.3.x+9-4
C=(2x-3)2-4
C có giá trị nhỏ nhất khi (2x-3)2=0
2x-3=0
2x=3/2
cho đa thức A(x)= 2(5x^3-6x^2-4x)-(10x^3-14x^2-6x+1).Tìm x, biết A(x)= -1
gpt 6x^2-10x+5-(4x-1).căn(6x^2-6x+5)=0