Những câu hỏi liên quan
VH
Xem chi tiết
KN
13 tháng 1 2016 lúc 12:44

Có a2 - 1 = (a+1)(a-1) 

Xét tích (a-1)a(a+1) chia hết cho 3

Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3          (1)

Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)

Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8            (2)

Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )

Bình luận (0)
ML
Xem chi tiết
NS
Xem chi tiết
TM
30 tháng 1 2017 lúc 15:53

Đề bài phải có điều kiện a là số nguyên hay số tự nhiên...gì đó chứ bạn!?

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Dễ thấy \(\left(a-1\right)a\left(a+1\right)\) là tích của 3 số nguyên liên tiếp 

=>\(\left(a-1\right)a\left(a+1\right)\) chia hết cho 2 và 3

<=> \(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\) chia hết cho 2 và 3 (1)

Xét các trường hợp:

+) a=5k => \(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)=\left(5k-1\right)5k\left(5k+1\right)\left[\left(5k\right)^2+1\right]⋮5\) (\(k\in Z\))

+) a=5k+1 => (a-1)a(a+1)(a2+1)=(5k+1-1)(5k+1)(5k+1+1)[(5k+1)2+1]=5k(5k+1)(5k+2)[(5k+1)2+1]\(⋮5\)

+) a=5k+2 => (a-1)a(a+1)(a2+1)=(5k+2-1)(5k+2)(5k+2+1)[(5k+2)2+1]=(5k+1)(5k+2)(5k+3)(25k2+20k+5)\(⋮5\)

+) a=5k+3 => (a-1)a(a+1)(a2+1)=(5k+3-1)(5k+3)(5k+3+1)[(5k+3)2+1]=(5k+2)(5k+3)(5k+4)(25k2+30k+10)\(⋮5\)

+) a=5k+4 => (a-1)a(a+1)(a2+1)=(5k+4-1)(5k+4)(5k+4+1)[(5k+4)2+1]=(5k+3)(5k+4)(5k+5)[(5k+4)2+1]\(⋮5\)

=>\(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\) chia hết cho 5 (2)

Từ (1) và (2) => đpcm

Bình luận (0)
NS
30 tháng 1 2017 lúc 16:44

khổ quá ko có bạn ạ, nếu có mình đã ko hỏi

Bình luận (0)
HP
30 tháng 1 2017 lúc 17:05

vậy chỉ có thể là đề thiếu thôi 

Bình luận (0)
PN
Xem chi tiết
DX
19 tháng 7 2023 lúc 8:54

Ta có:\(a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)

Vì (a-2)(a-1)a(a+1)(a+2) là tích của 5 số nguyên liên tiếp nên có một số chia hết cho 2, một số chia hết cho 3 và một số chia hết cho 5. Mà 3 số này đôi một nguyên tố cùng nhau nên (a-2)(a-1)a(a+1)(a+2) chia hết cho 2.3.5=30 (*)

Vì (a-1)a(a+1) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3. Mà (2;3)=1 nên 5(a-1)a(a+1) chia hết cho 2.3.5=30 (**)

Từ (*)và(**) => \(a^5-5\) chia hết cho 30(đpcm)

Bình luận (0)
DL
Xem chi tiết
H24

Ta có: (a^5-a)= a(a^4-1)

= a(a^2-1)(a^2+1) 

= a(a-1)(a+1)(a^2+1) 

= a(a-1)(a+1)(a^2-4+5) 

= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1) 

Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

=> a^5-a chia hết cho 30  

=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30 

Mà a+b+c chia hết cho 30 

=> a^5+b^5+c^5 chia hết cho 30

Bình luận (0)
DN
Xem chi tiết
H9
9 tháng 8 2023 lúc 8:09

\(A=5+5^2+...+5^{30}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(A=\left(5+25\right)+5\cdot\left(5+25\right)+...+5^{28}\cdot\left(5+25\right)\)

\(A=30+5\cdot30+...+5^{28}\cdot30\)

\(A=30\cdot\left(1+5+...+5^{28}\right)\)

Vậy A chia hết cho 30

Bình luận (0)
H9
9 tháng 8 2023 lúc 8:11

\(A=5+5^2+....+5^{30}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{28}+5^{29}+5^{30}\right)\)

\(A=5\cdot\left(1+5+25\right)+5^4\cdot\left(1+5+25\right)+...+5^{28}\cdot\left(1+5+25\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{28}\cdot31\)

\(A=31\cdot\left(5+5^4+...+5^{28}\right)\)

Vậy A chia hết cho 31

Bình luận (0)
H9
9 tháng 8 2023 lúc 8:06

\(A=5+5^2+...+5^{30}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(A=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^{29}\cdot\left(1+5\right)\)

\(A=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)

\(A=6\cdot\left(5+5^3+...+5^{29}\right)\)

Vậy A chia hết cho 6

Bình luận (0)
BY
Xem chi tiết
HT
8 tháng 4 2021 lúc 15:31

A = 2 + 22 + 23 + ...+ 230

A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 229 + 230 )

A = 2(1+2) + 23(1+2) + ....+ 229(1+2)

A = 2.3 + 23 . 3 + ...+ 229.3

A = 3(2+23 + ...+ 229\(⋮\) 3

Vậy  A chia hết cho 3 

Bình luận (0)
 Khách vãng lai đã xóa
TC
Xem chi tiết
NQ
19 tháng 11 2017 lúc 19:48

A =(5+5^2)+(5^3+5^4)+.....+(5^2007+2^2008)

=30+5^2.(5+5^2)+....+5^2006.(5+5^2)

=30+5^2.30+....+5^2006.30

=30.(1+5^2+...+5^2006) chia hết cho 30

=> ĐPCM

k mk nha

Bình luận (0)
DH
19 tháng 11 2017 lúc 19:51

Ta có: \(A=5+5^2+.....+5^{2008}\)

\(\Rightarrow A=\left(5+5^2+5^3\right)+.....+\left(5^{2006}+5^{2007}+5^{2008}\right)\)

           \(=5.\left(1+5+5^2\right)+.....+5^{2006}.\left(1+5+5^2\right)\)

             \(=5.31+....+5^{2006}.31\)

               \(31.\left(5+....+5^{2006}\right)⋮31\)

Vậy A chia cho 30 dư 1

Bình luận (0)
PK
19 tháng 11 2017 lúc 19:53

bài này giải như sau:

A=5+5^2+5^3+5^4+...+5^2008 

số số hạng của dãy số trên là:(2008-1):1+1=2008(số)

A=(5+5^2)+5^2(5+5^2)+...+5^2006(5+5^2)

A=30 +5^2.30+...+5^2006.30

A=30(1+5^2+...+2^2006) chia hết cho 30

Chúc bạn làm bài tốt nhé

Bình luận (0)
H24
Xem chi tiết
PD
16 tháng 11 2018 lúc 21:14

1:\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)

\(A=4+3^2\cdot4+....+3^{10}\cdot4\)

\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4

Vì ta có 4 chia hết cho 4 => A có chia hết cho 4

Vậy A chia hết cho 4

Bình luận (0)
PD
16 tháng 11 2018 lúc 21:18

2:

\(C=5+5^2+5^3+...+5^8\) chia hết cho 30

\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)

\(C=30\cdot\left(5^2+...+5^6\right)\)

Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30

Vậy C có chia hết cho 30

Bình luận (0)