Những câu hỏi liên quan
H24
Xem chi tiết
HN
12 tháng 8 2016 lúc 9:39

Ta luôn có : \(\left|x+\frac{8}{5}\right|\ge0\) , \(\left|2,2-2y\right|\ge0\)

Suy ra \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

Do đó : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\) \(\Rightarrow\begin{cases}x=-\frac{8}{5}\\y=\frac{11}{10}\end{cases}\)

Bình luận (0)
IM
12 tháng 8 2016 lúc 9:39

Ta có

\(\begin{cases}\left|x+\frac{8}{5}\right|\ge0\\\left|2,3-2y\right|\ge0\end{cases}\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,3-2y\right|\ge0\)

=> \(x,y\in\varnothing\)

Bình luận (0)
VT
12 tháng 8 2016 lúc 9:40

Vì : \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=1,1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=\frac{11}{10}\end{cases}\)

Bình luận (0)
DH
Xem chi tiết
DT
Xem chi tiết
MH
8 tháng 1 2016 lúc 9:16

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Bình luận (0)
TT
8 tháng 1 2016 lúc 9:17

\(y=1,1\)

x=-8/5

Bình luận (0)
ND
8 tháng 1 2016 lúc 21:21

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Bình luận (0)
H24
Xem chi tiết
SG
12 tháng 8 2016 lúc 9:23

Vì \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

=>\(\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}}\)=>  \(\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\2y=2,2\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\y=1,1=\frac{11}{10}\end{cases}}\)

Bình luận (0)
MM
12 tháng 8 2016 lúc 9:16

kb vs mk nha

Bình luận (0)
TV
12 tháng 8 2016 lúc 9:23

k minh nha Yumi

Bình luận (0)
NH
Xem chi tiết
TM
Xem chi tiết
DV
8 tháng 7 2016 lúc 10:49

a) \(\Leftrightarrow\left|x-3\right|=0;\left|y-2x\right|=0;\left|2z-x+y\right|=0\) 

\(\Leftrightarrow x=3;y=2x;2z=-y+x\)

Ta có : y = 2x => y = 2 . 3 = 6

 và 2z = -y + x  => 2z = -6 + 3 = -3  => z = \(-\frac{3}{2}\)

b) \(\Leftrightarrow\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|=0\) (vĩ mỗi số hạng trong tổng đều lớn hơn hoặc bằng 0)

\(\Leftrightarrow\left|x-y\right|=0;\left|2y+x-\frac{1}{2}\right|=0;\left|x+y+z\right|=0\)

\(\Leftrightarrow x=y;2y+x=\frac{1}{2};x+y=-z\)

Vì x = y nên \(2y+x=3y=\frac{1}{2}\Rightarrow x=y=\frac{1}{2}:3=\frac{1}{6}\)

và \(-z=x+y=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\Rightarrow z=-\frac{1}{3}\)

Bình luận (0)
CC
Xem chi tiết
LH
Xem chi tiết
SL
Xem chi tiết
KT
12 tháng 8 2018 lúc 19:30

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé

Bình luận (0)