Những câu hỏi liên quan
CM
Xem chi tiết
KT
Xem chi tiết
NT
15 tháng 10 2021 lúc 22:02

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

Bình luận (1)
NL
16 tháng 10 2021 lúc 9:52

24

Bình luận (0)
LK
Xem chi tiết
H24
Xem chi tiết
NL
17 tháng 4 2022 lúc 12:14

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

Bình luận (0)
HT
Xem chi tiết
NT
3 tháng 1 2021 lúc 20:33

Vừa học xong :v 

\(A=\frac{4}{4x^2-4x+7}\)

Ta có : \(4x^2-4x+7=4x^2-4x+1+6\)

\(=\left(2x-1\right)^2+6\ge6\)Do đó : 

\(\frac{4}{\left(2x-1\right)^2+6}\le\frac{4}{6}=\frac{2}{3}\)

Dấu ''='' xảy ra : <=> \(x=\frac{1}{2}\)

Vậy GTLN A = 2/3 <=> x = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
LD
3 tháng 1 2021 lúc 20:00

Ta có : 4x2 - 4x + 7

= ( 4x2 - 4x + 1 ) + 6

= ( 2x - 1 )2 + 6 ≥ 6 ∀ x

hay 4x2 - 4x + 7 ≥ 6 ∀ x

=> \(\frac{1}{4x^2-4x+7}\le\frac{1}{6}\left(\forall x\right)\)

=> \(\frac{4}{4x^2-4x+7}\le\frac{4}{6}=\frac{2}{3}\left(\forall x\right)\)

Đẳng thức xảy ra khi x = 1/2

=> MaxA = 2/3 <=> x = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
GL
21 tháng 4 2019 lúc 8:29

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

Bình luận (0)
NN
Xem chi tiết
DH
Xem chi tiết
PQ
22 tháng 4 2018 lúc 16:16

\(a)\) Ta có : 

\(A=\frac{1}{x^2-4x+7}\)

\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)

\(A=\frac{1}{\left(x-2\right)^2+3}\)

Lại có : 

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)

\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
22 tháng 4 2018 lúc 16:18

\(b)\) Ta có : 

\(f\left(x\right)=x^2-4x+7\)

\(f\left(x\right)=\left(x^2-4x+4\right)+3\)

\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)

Vậy đa thức \(f\left(x\right)\) vô nghiệm 

Chúc bạn học tốt ~ 

Bình luận (0)
TT
Xem chi tiết
MT
24 tháng 5 2015 lúc 12:32

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

Bình luận (0)