HN

Những câu hỏi liên quan
DD
Xem chi tiết

\(6x-y+3xy=15\)

\(\Leftrightarrow\left(6x+3xy\right)-y=15\)

\(\Leftrightarrow3x\left(2+y\right)-y=13+2\)

\(\Leftrightarrow3x\left(2+y\right)-y-2=13\)

\(\Leftrightarrow3x\left(2+y\right)-\left(y+2\right)=13\)

\(\Leftrightarrow\left(2+y\right)\left(3x-1\right)=13\)

\(\Rightarrow\left(2+y\right);\left(3x-1\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Xét từng trường hợp :

TH1 : \(\hept{\begin{cases}2+y=1\\3x-1=13\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=\frac{14}{3}\end{cases}}\)

TH2:\(\hept{\begin{cases}2+y=13\\3x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=11\\x=\frac{2}{3}\end{cases}}}\)

TH3:\(\hept{\begin{cases}2+y=-1\\3x-1=-13\end{cases}\Leftrightarrow\hept{\begin{cases}y=-3\\x=-4\end{cases}}}\)

TH4:\(\hept{\begin{cases}2+y=-13\\3x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-15\\x=0\end{cases}}\)

Vậy................

/hok chắc/

~ học tốt~

Bình luận (0)
NH
Xem chi tiết
JK
Xem chi tiết
DI
15 tháng 3 2020 lúc 21:03

Ta có : 

6x - y + 3xy = 15

=> (6x + 3xy) - y = 15 

=> 3x(2 + y) - y = 15 

=> 3x(2+y) - y - 2 = 13 

=> 3x(2+y) -(2+y) = 13

=> (3x-1)(2+y) = 13

=> 3x -1 ; 2+y thuộc Ư ( 13)

Tự xét ước nha bạn 

Bình luận (0)
 Khách vãng lai đã xóa
HT
15 tháng 3 2020 lúc 21:14

6x-y+3xy=15

3x(2+y)-y=15

3x(2+y)-(2+y)=13

(3x-1)(2+y)=13

Vì x;y là số nguyên => 3x-1;2+y là số nguyên

                               => \(3x-1;2+y\inƯ\left(13\right)\)

Ta có bảng:

3x-1113-1-13
2+y131-13-1
x2/314/30-4
y11-1-15-3

Vậy.....................................................................................................................................

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NT
2 tháng 12 2023 lúc 9:57

bài 5:

1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)

2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)

\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)

3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)

\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)

\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)

\(=\dfrac{1}{6\left(x^2+x+1\right)}\)

5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)

\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)

\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)

\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)

Bài 3:

1: \(9x^3-xy^2\)

\(=x\cdot9x^2-x\cdot y^2\)

\(=x\left(9x^2-y^2\right)\)

\(=x\left(3x-y\right)\left(3x+y\right)\)

2: \(x^2-3xy-6x+18y\)

\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)

\(=x\left(x-3y\right)-6\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-6\right)\)

3: \(x^2-3xy-6x+18y\)

\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)

\(=x\left(x-3y\right)-6\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-6\right)\)

4: \(6xy-x^2+36-9y^2\)

\(=36-\left(x^2-6xy+9y^2\right)\)

\(=36-\left(x-3y\right)^2\)

\(=\left(6-x+3y\right)\left(6+x-3y\right)\)

5: \(x^4-6x^2+5\)

\(=x^4-x^2-5x^2+5\)

\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)

\(=\left(x^2-5\right)\left(x^2-1\right)\)

\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)

6: \(9x^2-6x-y^2+2y\)

\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)

\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)

\(=\left(3x-y\right)\left(3x+y-2\right)\)

Bình luận (0)
XL
Xem chi tiết
NT
21 tháng 9 2021 lúc 22:02

a: \(15xy^2z^3:3xyz^2=5yz\)

b: \(12x^4y^4:\left(-4x^4y^2\right)=-3y^2\)

c: \(\dfrac{-15x^2y^3z^2}{-6xz^2}=\dfrac{5}{2}xy^3\)

d: \(\dfrac{\left(x-y\right)^5}{\left(y-x\right)^3}=-\left(x-y\right)^2\)

Bình luận (1)
LA
22 tháng 10 2020 lúc 20:35

Ta có: 3xy(x - y) + 6x2(y - x)

= 3xy(x - y) - 6x2(x - y)

=3x(x-y)(y-2x)

Bạn tham khảo nhé!

Bình luận (0)
 Khách vãng lai đã xóa
DR
Xem chi tiết
NL
17 tháng 2 2021 lúc 11:01

a) ĐKXĐ: \(x\ne0\)

 \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)

\(=\dfrac{2\left(4x+1\right)+2x-3}{6x}\)

\(=\dfrac{10x-1}{6x}\)

 

b) ĐKXĐ: \(x,y\ne0\)

 \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)

\(=\dfrac{\left(x-y\right).\left(x+y\right)}{6x^2y^2}.\dfrac{3xy}{x+y}\)

\(=\dfrac{x-y}{2xy}\)

Bình luận (0)
NT
17 tháng 2 2021 lúc 17:12

a) Ta có: \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)

\(=\dfrac{2\left(4x+1\right)}{6x}+\dfrac{2x-3}{6x}\)

\(=\dfrac{8x+2+2x-3}{6x}\)

\(=\dfrac{10x-1}{6x}\)

b) Ta có: \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\cdot\dfrac{3xy}{x+y}\)

\(=\dfrac{x-y}{2xy}\)

Bình luận (0)
DA
Xem chi tiết
MD
Xem chi tiết