6x-y+3xy=15
Tìm x,y thuộc Z biết 6x - y + 3xy = 15
\(6x-y+3xy=15\)
\(\Leftrightarrow\left(6x+3xy\right)-y=15\)
\(\Leftrightarrow3x\left(2+y\right)-y=13+2\)
\(\Leftrightarrow3x\left(2+y\right)-y-2=13\)
\(\Leftrightarrow3x\left(2+y\right)-\left(y+2\right)=13\)
\(\Leftrightarrow\left(2+y\right)\left(3x-1\right)=13\)
\(\Rightarrow\left(2+y\right);\left(3x-1\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Xét từng trường hợp :
TH1 : \(\hept{\begin{cases}2+y=1\\3x-1=13\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=\frac{14}{3}\end{cases}}\)
TH2:\(\hept{\begin{cases}2+y=13\\3x-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=11\\x=\frac{2}{3}\end{cases}}}\)
TH3:\(\hept{\begin{cases}2+y=-1\\3x-1=-13\end{cases}\Leftrightarrow\hept{\begin{cases}y=-3\\x=-4\end{cases}}}\)
TH4:\(\hept{\begin{cases}2+y=-13\\3x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-15\\x=0\end{cases}}\)
Vậy................
/hok chắc/
~ học tốt~
4x + 2xy = 15 +y
3xy - 9x +y 8
15x - y + 5xy =10
y +3xy -6x =19
x -5xy = 13 + 5y
tìm x,y\(\varepsilon\)Z : 6x-y+3xy=15
Ta có :
6x - y + 3xy = 15
=> (6x + 3xy) - y = 15
=> 3x(2 + y) - y = 15
=> 3x(2+y) - y - 2 = 13
=> 3x(2+y) -(2+y) = 13
=> (3x-1)(2+y) = 13
=> 3x -1 ; 2+y thuộc Ư ( 13)
Tự xét ước nha bạn
6x-y+3xy=15
3x(2+y)-y=15
3x(2+y)-(2+y)=13
(3x-1)(2+y)=13
Vì x;y là số nguyên => 3x-1;2+y là số nguyên
=> \(3x-1;2+y\inƯ\left(13\right)\)
Ta có bảng:
3x-1 | 1 | 13 | -1 | -13 |
2+y | 13 | 1 | -13 | -1 |
x | 2/3 | 14/3 | 0 | -4 |
y | 11 | -1 | -15 | -3 |
Vậy.....................................................................................................................................
Bài 3: phân tích thành nhân tử:
1/ 9x^3-xy^2
2/x^2-3xy-6x+18y
3/x^2-3xy-6x+18y 3/6x(x-y)-9y^2+9xy
4/ 6xy-x^2+36-9y^2
5/ x^4-6x^2+5
6/ 9x62-6x-y^2+2y
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài5: 1/ 12x^3y^2/18xy^5
2/10xy-5x^2/2x^2-8y^2
3/ x^2-xy-x+y/x^2+xy-x-y
4/ (x+1)(x^2-2x+1)/(6x^2-6)(x^3-1)
5/ 2x^2-7x+3/1-4x^2
bài 5:
1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)
2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)
\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)
3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)
\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)
\(=\dfrac{1}{6\left(x^2+x+1\right)}\)
5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)
\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)
\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)
Bài 3:
1: \(9x^3-xy^2\)
\(=x\cdot9x^2-x\cdot y^2\)
\(=x\left(9x^2-y^2\right)\)
\(=x\left(3x-y\right)\left(3x+y\right)\)
2: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
3: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
4: \(6xy-x^2+36-9y^2\)
\(=36-\left(x^2-6xy+9y^2\right)\)
\(=36-\left(x-3y\right)^2\)
\(=\left(6-x+3y\right)\left(6+x-3y\right)\)
5: \(x^4-6x^2+5\)
\(=x^4-x^2-5x^2+5\)
\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)
6: \(9x^2-6x-y^2+2y\)
\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)
\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x+y-2\right)\)
a(15 xy^2z^3 :(3xyz^2)
b(12 x^y^4 : (-4x^4y^2)
c (-15x^2y^3z^2 ) :(-6xz^2)
d(x-y)^5 : (y-x)^3
(x-y)^5 : (y-x)^2
f(3xy-6x)^3 : 9(2x-y)
a: \(15xy^2z^3:3xyz^2=5yz\)
b: \(12x^4y^4:\left(-4x^4y^2\right)=-3y^2\)
c: \(\dfrac{-15x^2y^3z^2}{-6xz^2}=\dfrac{5}{2}xy^3\)
d: \(\dfrac{\left(x-y\right)^5}{\left(y-x\right)^3}=-\left(x-y\right)^2\)
3xy(x-y)+6x²(y-x)=?
Ta có: 3xy(x - y) + 6x2(y - x)
= 3xy(x - y) - 6x2(x - y)
=3x(x-y)(y-2x)
Bạn tham khảo nhé!
a) \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
b)\(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
a) ĐKXĐ: \(x\ne0\)
\(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) ĐKXĐ: \(x,y\ne0\)
\(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right).\left(x+y\right)}{6x^2y^2}.\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)
a) Ta có: \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{2\left(4x+1\right)}{6x}+\dfrac{2x-3}{6x}\)
\(=\dfrac{8x+2+2x-3}{6x}\)
\(=\dfrac{10x-1}{6x}\)
b) Ta có: \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\cdot\dfrac{3xy}{x+y}\)
\(=\dfrac{x-y}{2xy}\)
Tìm x;y để
3xy+y+6x=7
tim x,y
3xy -6x +y+3 =0