Những câu hỏi liên quan
PC
Xem chi tiết
H24
29 tháng 8 2019 lúc 18:40

\(DK:x\ge0\)

\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)

\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)

\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)

\(\Leftrightarrow x=1\)

Vay nghiem cua PT la \(x=1\)

Bình luận (0)
HL
Xem chi tiết
DA
Xem chi tiết
NT
20 tháng 5 2017 lúc 17:52

mik ko biết vì mới chỉ học lớp 6

Bình luận (0)
NV
20 tháng 5 2017 lúc 21:42

ĐKXĐ: \(x\ge\frac{1}{2}\)

Đề \(\Rightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}+8-2x^2-\left(\sqrt{2x-1}-\sqrt{3}\right)=0\)

Nhân liên hợp ta được:

\(\frac{\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{\left(\sqrt{2x-1}-\sqrt{3}\right)\left(\sqrt{2x+1}+\sqrt{3}\right)}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{2x-1-3}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(2-x\right)\left(2+x\right)-\frac{2x-4}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\left(x-2\right)\left[\frac{-2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}\right]=0\)

mà \(-\frac{2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}< 0\)

=> x - 2 = 0 => x = 2

                                                   Vậy x = 2

Bình luận (0)
SS
20 tháng 5 2017 lúc 21:50

rảnh  quá 

Bình luận (0)
VD
Xem chi tiết
NT
23 tháng 11 2022 lúc 23:10

1; Khi m=1 thì pt sẽ là \(\sqrt{x+1}=x+1\)

=>(x+1)^2=(x+1)

=>x(x+1)=0

=>x=0hoặc x=-1

2: \(\Leftrightarrow x+1=\left(x+m\right)^2\)

=>x^2+2mx+m^2-x-1=0

=>x^2+x(2m-1)+m^2-1=0

Δ=(2m-1)^2-4(m^2-1)

=4m^2-4m+1-4m^2+4

=-4m+5

Để pt có 2 nghiệm pb thì -4m+5>0

=>-4m>-5

=>m<5/4

Để pt có nghiệm kép thì 5-4m=0

=>m=5/4

Để pt vô nghiệm thì -4m+5<0

=>m>5/4

Bình luận (0)
LV
Xem chi tiết
TN
26 tháng 6 2017 lúc 12:32

\(x+\sqrt{5+\sqrt{x-1}}=6\)

Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{5+\sqrt{x-1}}=6-x\)

\(\Leftrightarrow5+\sqrt{x-1}=x^2-12x+36\)

\(\Leftrightarrow\sqrt{x-1}=x^2-12x+31\)

\(\Leftrightarrow x-1=x^4-24x^3+206x^2-744x+961\)

\(\Leftrightarrow-x^4+24x^3-206x^2+745x-962=0\)

\(\Leftrightarrow-\left(x^2-13x+37\right)\left(x^2-11x+26\right)=0\)

\(\Rightarrow x=-\frac{\sqrt{17}-11}{2}\) (thỏa)

Bình luận (0)
H24
Xem chi tiết
PN
11 tháng 10 2017 lúc 18:33

Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)

Dấu \(=\)xảy ra khi \(AB\ge0\)

Bình luận (0)
HN
11 tháng 10 2017 lúc 18:37

dat \(\sqrt{x-1}\) = t

ta có: \(\sqrt{x+3+4t}\)\(\sqrt{x+8-6t}\)= 5

     x + 3 + 4t + x + 8 - 6t = 25

   2x - 2t = 14 ( chia cả 2 vế cho 2)

   x - t = 7

   t = x - 7

  thay t = \(\sqrt{x}-1\)vào ta được:

 x - 7 = \(\sqrt{x-1}\)

( x - 7 )2 = x - 1

x2 -14x + 49 = x - 1

x- 15x + 50 = 0

​k biết đúng hay k

Bình luận (0)
H24
11 tháng 10 2017 lúc 19:06

OoO Ledegill2 OoO. Ban co the giai thich ro hon giup minh duoc khong. hi

Bình luận (0)
NL
Xem chi tiết
LF
27 tháng 8 2018 lúc 0:11

\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)

\(\Leftrightarrow\dfrac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\dfrac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)

\(\Leftrightarrow\dfrac{x-5}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{x-5}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)

Dễ thấy: \(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)

\(\Rightarrow x-5=0\Leftrightarrow x=5\)

Bình luận (0)
HN
27 tháng 8 2018 lúc 9:26

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+3}=a\\\sqrt[3]{6-x}=b\end{matrix}\right.\)thì co hệ

\(\left\{{}\begin{matrix}a=1+b\left(1\right)\\a^3+b^3=9\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1+b\right)^3+b^3=9\)

\(\Leftrightarrow\left(b-1\right)\left(2b^2+5b+8\right)=0\)

Dễ thây \(2b^2+5b+8>0\)

\(\Rightarrow b=1\)

\(\Rightarrow\sqrt[3]{6-x}=1\)

\(\Leftrightarrow x=5\)

Bình luận (0)
MP
26 tháng 8 2018 lúc 13:03

\(pt\Leftrightarrow\sqrt[3]{x+3}=\sqrt[3]{6-x}+1\)

\(\Leftrightarrow2x-4=3\sqrt[3]{6-x}\left(\sqrt[3]{6-x}+1\right)\)

\(\Leftrightarrow2x-4=3\sqrt[3]{6-x}\sqrt[3]{x+3}\)

\(\Leftrightarrow8x^3-32x^2+64x-64=27\left(6-x\right)\left(x+3\right)\)

\(\Rightarrow...\)

Bình luận (0)
PD
Xem chi tiết
KS
5 tháng 10 2019 lúc 21:45

\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)

\(\Leftrightarrow\frac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\frac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)

Dễ thấy :

\(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)

\(\Rightarrow x-5=0\Leftrightarrow x=5\)

Chúc bạn học tốt !!!

Bình luận (0)
CN
Xem chi tiết
TN
29 tháng 7 2017 lúc 18:06

gõ lại đề 

Bình luận (0)