Những câu hỏi liên quan
TS
Xem chi tiết
HA
Xem chi tiết
LF
18 tháng 9 2016 lúc 7:20

Ta có:

\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge x-1+0+3-x=2\)

\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)

Vậy MinB=2013 khi x=2

 

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
LP
2 tháng 9 2019 lúc 17:57

A = |x+3| + |x-5|

A = |x+3| + |5-x| >= |x+3+5-x| = 8

Dấu "=" xảy ra <=> (x+3)(5-x) >=0

=> x >= -3; x <= 5 hoặc x<= -3;x>=5 (không xảy ra)

Vậy Min A = 8 khi -3<=x<=5

Bình luận (0)
HH
2 tháng 9 2019 lúc 17:59

   A=|x+3|+|x-5|

     =|x+3|+|5-x|> hoặc bằng |x+3+5-x|=8

    (Mình chỉ bt làm đến đây thôi, xin lỗi bạn nha!!!

Bình luận (0)
PL
Xem chi tiết
SG
15 tháng 12 2016 lúc 22:44

A = |x - 1| + |x + 5| + (x - 2)2 + 2017

A = |x - 1| + |x + 5| + |(x - 2)2| + 2017

A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017

Áp dụng bđt |a| + |b| + |c| \(\ge\)|a+b+c| ta có:

A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017 \(\ge\)|x - 1 + x + 5 + x2 + 4 - 4x| + 2017

A\(\ge\) |x2 - 2x + 8| + 2017

A \(\ge\) |x2 - x - x + 1 + 7| + 2017

A\(\ge\) |(x - 1)2 + 7| + 2017

A\(\ge\) (x - 1)2 + 2024

Dấu "=" xảy ra khi x - 1 \(\ge\)0; x + 5 \(\ge\)0

=> x \(\ge\)1; x \(\ge\)-5

=> x \(\ge\)1

Vậy GTNN của A là 2024 khi x = 1

Bình luận (2)