Những câu hỏi liên quan
PN
Xem chi tiết
CT
28 tháng 4 2017 lúc 21:04

Đặt d = ƯCLN(5n+1, 6n+1) thì

5n+1 chia hết cho d, 6n+1 chia hết cho d

=> 6(5n+1) - 5(6n+1) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1) = {1; -1} => d = 1

Vậy 5n+1/6n+1 tối giản với mọi STN n

Bình luận (0)
KS
28 tháng 4 2017 lúc 21:05

Gọi d là UCLN của 5n+1 và 6n+1

\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)

Hay \(6\left(5n+1\right)⋮d\)và \(5\left(6n+1\right)⋮d\)

\(\Leftrightarrow30n+6⋮d\)và \(30n+5⋮d\)

\(\Rightarrow30n+6-\left(30n+5\right)⋮d\)

Hay \(1⋮d\Rightarrow d=1hoac\left(-1\right)\Rightarrow dpcm\)

Ai thấy đúng k nha

Bình luận (0)
BS
Xem chi tiết
DA
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
H24
6 tháng 4 2017 lúc 12:50

gọi d là ƯCLN(5n+1;6n+1)

=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d

=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d

=>(30n+6)-(30n+5)chia hết cho d

=> 1 chia hết cho d

=> d= 1

=>5n+1 và 6n+1 là hai snt cùng nhau

Vậy phân số 5n+1/6n+1 là phân số tối giản

Bình luận (0)
OT
Xem chi tiết
CC
Xem chi tiết
NU
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Bình luận (0)
 Khách vãng lai đã xóa
CC
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
AH
30 tháng 4 2023 lúc 23:20

Lời giải:
Gọi $d=ƯCLN (5n+3, 3n+2)$

Khi đó:

$5n+3\vdots d$ và $3n+2\vdots d$

$\Rightarrow 5(3n+2)-3(5n+3)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $(5n+3, 3n+2)=1$

$\Rightarrow \frac{5n+3}{3n+2}$ là phân số tối giản.

Bình luận (0)
HD
Xem chi tiết
ML
9 tháng 5 2016 lúc 22:05

goij d là UCLN của 5n+1 và 6n+1

ta có 5n+1 chia hết cho d=> 6(5n+1) chia hết cho d=> 30n+6 chia hết cho d(1)

ta có 6n+1 chia hết cho d=> 5(6n+1) chia hết cho d=> 30n+5 chia hết cho d(2)

lấy (1)-(2)

ta có (30n+6)-(30n+5)chia hết cho d

vậy 1 chia hết cho d

nên d=(1;-1)

vậy phân số đã cho tối giản

Bình luận (0)
VD
Xem chi tiết
NL
20 tháng 3 2023 lúc 12:23

Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)

\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau

Hay P tối giản

Bình luận (0)
ST
10 tháng 4 2023 lúc 21:39

loading...

Bình luận (0)
HG
Xem chi tiết