Những câu hỏi liên quan
H24
Xem chi tiết
VT
27 tháng 6 2016 lúc 17:10

a) Ta lam theo cach quy nap, Dat n=k

\(n^2+11n-10=k^2+11k-10\)khong chia het cho 49

Ta phai chung minh cung dung voi k+1

Ta co: \(\left(k+1\right)^2+11\left(k+1\right)-10=k^2+2k+1+11k+11-10=k^2+13k+2\)

\(=k^2+2\times k\times\frac{13}{2}+\frac{169}{4}-\frac{169}{4}+2=\left(k+\frac{13}{2}\right)^2-40,25\) khong chia het cho 49

=> DPCM

Bình luận (0)
H24
Xem chi tiết
XO
9 tháng 7 2021 lúc 10:24

a) Ta có n3 - n + 4 

= n(n2 - 1) + 4

= (n - 1)n(n + 1) + 4 

Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp) 

mà 4 \(⋮̸\)

=> n3 - n + 4 không chia hết cho 3

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
NN
29 tháng 8 2015 lúc 21:36

khó tek ai mà lm đc@@@@

Bình luận (0)
NT
Xem chi tiết
NP
28 tháng 11 2017 lúc 19:36

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

Bình luận (0)
BH
28 tháng 11 2017 lúc 19:36

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.

Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121

=> (2n+3)^2+11  ko chia hết chia het cho 121

Bình luận (0)
DA
Xem chi tiết
NT
12 tháng 12 2021 lúc 14:59

\(\Leftrightarrow n+11\in\left\{1;-1;37;-37\right\}\)

hay \(n\in\left\{-10;-12;26;-48\right\}\)

Bình luận (0)
NM
12 tháng 12 2021 lúc 15:01

\(\Rightarrow n^2+11n-2n-22+37⋮n+11\\ \Rightarrow n\left(n+11\right)-2\left(n+11\right)+37⋮n+11\\ \Rightarrow n+11\inƯ\left(37\right)=\left\{-37;-1;1;37\right\}\\ \Rightarrow n\in\left\{-48;-12;-10;26\right\}\)

Bình luận (0)
HA
Xem chi tiết
NL
18 tháng 10 2021 lúc 13:12
A) =7.(4.5.6.8+6.8.9) chia hết cho 7 = 4.5.6.7.8+6.8.9chia hết cho 7
Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NT
29 tháng 10 2023 lúc 14:59

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

Bình luận (0)
KL
29 tháng 10 2023 lúc 15:07

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Bình luận (0)
DT
Xem chi tiết
DD
22 tháng 6 2016 lúc 15:27

ta có 343=7^3

vì 9n^3 không chia hết cho 7

vì 9n^2 không chia hết cho 7

vì 3n  không chia hết cho 7

vì 16  không chia hết cho 7

=> 9n^3+9n^2+3n-16 không chia hết cho 343

Bình luận (0)
BT
Xem chi tiết
NT
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

Bình luận (1)