Những câu hỏi liên quan
PB
Xem chi tiết
CT
15 tháng 6 2018 lúc 11:43

Đáp án đúng : B

Bình luận (0)
VH
Xem chi tiết
VH
19 tháng 4 2021 lúc 13:07

làm ơn, mình đang cần rất gấp !!!!!!!!!!!!!

:((((((((((

 

Bình luận (0)
NC
19 tháng 4 2021 lúc 13:52

Do x = -1 là nghiệm của phương trình

⇒ a - b - 1 - 2 = 0

⇒ a - b = 3

Tương tự ta có a + b = 1

Vậy a = 2 ; b = -1 

 

Bình luận (0)
LK
Xem chi tiết
TC
14 tháng 8 2021 lúc 19:33

undefined

Bình luận (1)
PB
Xem chi tiết
CT
2 tháng 5 2019 lúc 4:13

Bình luận (0)
TD
Xem chi tiết
DH
16 tháng 8 2019 lúc 17:43

f(x)=ax^2+bx+c
=> f(1)= a + b + c
Mà f(1)= 3 nên a + b + c = 3 /1/
f(3) = 9a + 3b + c
Mà f(3)=5 => 9a + 3b + c = 5 /2/
f(5)= 25a + 5b + c
Mà f(5)=7 nên 25a + 5b + c = 7 /3/
Lấy /2/ - /1/, ta được:
8a + 2b = 2
<=> 2(4a + b) = 2
<=> 4a + b = 1 /4/
Lấy /3/ - /1/, ta được:
24a + 4 b = 4
<=> 4(6a + b) = 4
<=> 6a + b = 1 /5/
Lấy /5/ - /4/, ta được:
2a = 0
<=> a = 0
Thay a = 0 vào /4/, ta được:
4.0 + b = 1
<=> b = 1
Thay a = 0, b = 1 vào /1/, ta được:
0 + 1 + c = 3
<=> c = 2
=> a = 0, b = 1, c = 2
Vậy f(x) = 0.x^2 + x.1 + 2 = x + 2

Bình luận (0)
H24
16 tháng 8 2019 lúc 18:03

Tham khảo :

Xác định đa thức f(x) = ax^2 + bx + c biết f(1) = 3; f(3) = 5; f(5) = 7,Toán học Lớp 7,bà i tập Toán học Lớp 7,giải bà i tập Toán học Lớp 7,Toán học,Lớp 7

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
18 tháng 12 2019 lúc 13:45

Ta có f x = 4 x 2 + 4 x + 3 2 x + 1 dx

= ∫ 2 x + 1 + 2 2 x + 1 d x = x 2 + x + ln x + 1 + C

Do f(0) = 1 nên c = 1. Suy ra  f x = x 2 + x + ln 2 x + 1 + 1

Vậy a : b : c = 1 : 1 : 1

Đáp án B

Bình luận (0)
NT
Xem chi tiết
HN
Xem chi tiết
H24
28 tháng 5 2021 lúc 20:38

Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)

+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)

+Thay x=-2, ta có: 

\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\) 

Giải hệ pt, ta được: a=0, b=-3.

Bình luận (0)
H24
28 tháng 5 2021 lúc 20:41

Ta có : f(x) = 0 

⇔ ( x-1)(x+2) = 0 

⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x) 

Thay x = 1 vào g(x) = 0 

⇔ 13 + a.1+ b.1 + 2 = 0 

⇔ 1 + a + b + 2 = 0 

⇔ a + b = -3 (1) 

Thay x = -2 vào g(x) = 0 

⇔ (-2)3 + a.(-2)+ b.(-2) + 2 = 0 

⇔ -8 + a.4 - 2.b + 2 = 0 

⇔ 4a - 2b = 6 

⇔ 2.(2a - b ) = 6 

⇔ 2a - b = 3 (2) 

Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)

Bình luận (1)
PT
28 tháng 5 2021 lúc 20:55

 Để f (x) có nghiệm thì : f (x) = 0

=> (x−1)(x+2)=0

\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)

⇒g(1)=13+a⋅12+b⋅1+2=0

⇒1+a+b+2=0

⇒3+a+b=0

⇒b=−3−a (1)

@) 

g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0

⇒−8+4a−2b+2=0

⇒2⋅(−4)+2a+2a−2b+2=0

⇒2⋅(−4+a+a−b+1)=0

⇒(−3+2a−b)=0

=> 2a  b = 3 (2)

thay (1) vao (2) ta dc

2a−(−3−a)=3

⇒a=0

Do 2a−b=3

⇒b=−3Vậy a = 0 ; b = 3

 

Bình luận (0)