tim a,b thuoocj Z
\(\frac{1}{a}=\frac{b}{2}+\frac{3}{4}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tim a,b\(\in Z\)biết
\(\frac{1}{a}=\frac{1}{6}+\frac{b}{3}\)\(\frac{a}{4}-\frac{1}{b}=\frac{3}{4}\)
1.\(\frac{1}{a}=\frac{1}{6}+\frac{b}{3}=\frac{1}{6}+\frac{2b}{6}=2b+\frac{1}{6}=\frac{1}{a}\Rightarrow(2b+1)\cdot a=6=2b\cdot a+a=6=3a\cdot b=6\)
\(a\cdot b=\frac{6}{a}\)
\(3\cdot2\cdot b=6\Rightarrow a=2;b=1\)
2. \(\frac{a}{4}-\frac{1}{b}=\frac{3}{4}\)hay \(\frac{a}{4}-\frac{3}{4}=\frac{1}{b}=a-\frac{3}{4}=\frac{1}{b}=>(a-3)\cdot6=4\)
\(6a-18=4\)
\(6a=4+18=22\)
\(=>A\in\varnothing\)
Đúng nhé bạn
a, rut gon A
b, tim x de a<-1
c, tim cac gia tri nguyen cua x de A co gia tri nguyen
cho bthuc B = \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x-2}\right)chia\left(x-2+\frac{16-x^2}{x+2}\right)\)rut gon B tính b khi /x/ = 1/2tim x de b=2tim x \(\in\) z de b \(\in\) zBài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
1 . Cho a,b,c > 0 chứng minh rằng : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)
2 . Cho x , y , z > 0 thỏa mãn : \(x+y+z=2\)
Tìm GTNN của \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
3 . Cho các sô dương a , b , c biết \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le1\)
4 . Tim giá trị nhỏ nhất của biểu thức : \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Bài 1
Cho a , b , c > 0 . CM : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}\left(1\right)\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)\le\frac{a\left(a+b\right)\left(b+c\right)}{b}+\frac{b\left(a+b\right)\left(b+c\right)}{c}+\frac{c\left(a+b\right)\left(b+c\right)}{a}\)
\(=\frac{a^2c}{b}+a^2+ab+ac+\frac{b^2\left(a+b\right)}{c}+b^2+ab+c^2+bc+\frac{cb\left(b+c\right)}{a}\)
Mặt khác : \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)=a^2+ac+c^2+3b^2+3ab+3bc\)
Do đó ta cần chứng minh :
\(\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}\ge2b^2+2bc+ab\left(2\right)\)
\(VT=\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}=\frac{1}{2}\left(\frac{a^2c}{b}+\frac{b^3}{c}\right)+\frac{1}{2}\left(\frac{a^2c}{b}+\frac{c^2b}{a}\right)+\frac{1}{2}\left(\frac{b^3}{c}+\frac{c^2b}{a}\right)+b^2\left(\frac{c}{a}+\frac{a}{c}\right)\)
\(\ge ab+\sqrt{ac^3}+\sqrt{\frac{b^4c}{a}}+2b^2\ge ab+2bc+2b^2=VP\)
Dấu " = " xảy ra khi a=b=c
Bài 2 :
Vì x , y , z > 0 ta có :
Áp dụng BĐT Cô - si đối với 2 số dương \(\frac{x^2}{y+z}\) và \(\frac{y+z}{4}\)
ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\left(1\right)\) .
Tương tự ta cũng có :
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\left(2\right);\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\left(3\right)\)
Cộng theo vế (1) , (2) và (3) ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\Rightarrow P\ge\left(x+xy+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Vậy \(P=1\Leftrightarrow x=y=z=\frac{2}{3}\)
Bài 3 :
Theo gt \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le1\Rightarrow\frac{b}{1+b}+\frac{c}{1+c}\le1-\frac{a}{1+a}=\frac{1}{a+1}\)
Do b > 0 ; c>0 . Nên theo bất đẳng thức Co - si ta có :
\(\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}>0\Rightarrow\frac{1}{1+a}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}>0\left(1\right)\)
Chứng minh tương tự ta có :
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}>0\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}>0\left(3\right)\)
Từ (1) , (2) và (3) ta chứng minh được :
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\Rightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\Rightarrowđpcm\)
Tim x biet :
a, \(4\frac{1}{3}\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}\left(\frac{1}{2}-\frac{1}{3}-\frac{3}{4}\right)\) x thuoc Z
b , \(|x-3|+1=x\)
Bai 1:a)Tim x biet\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2009}{2011}\)
b)\(\left(x-1\right)\times f\left(x\right)=\left(x+4\right)\times f\left(x\right)\)voi moi x
Bai 2;Tim x;y;z biet a)\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\) b)\(\frac{2x+1}{5}=\frac{3y-z}{7}=\frac{2x+3y-1}{6x}\)
Tim x,y,z :
a) x=y:2,\(\frac{y}{4}=\frac{z}{5}\)va 2x+2y-z-7=0
b)\(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)va x-y=15
c)\(\frac{x}{y}=\frac{2}{3}\), \(\frac{x}{z}=\frac{1}{2}\)va \(x^3\)- xyz=-16
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
b) Ta có: \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\) <=> \(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> \(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}}\) => \(\hept{\begin{cases}x=30.2=60\\y=30.\frac{3}{2}=45\\z=30.\frac{4}{3}=40\end{cases}}\)
Vậy ...
a,Cho a,b,c duong va \(a^2+b^2+c^2\)=3. Tim Min cua P= \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^2+3}}\)
b,Cho x,y,z>0 va x+y+z=6. C/m \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
a/
-Cauchy-Schwar
\(P=\sum\frac{a^4}{a\sqrt{b^2+3}}\ge\frac{\left(\sum a^2\right)^2}{\sum a\sqrt{b^2+3}}\)
Côsi: \(\sum a\sqrt{b^2+3}=\frac{1}{2}\sum2a.\sqrt{b^2+3}\le\frac{1}{2}.\sum\frac{\left(2a\right)^2+b^2+3}{2}=\frac{1}{4}.\left[5\left(a^2+b^2+c^2\right)+3.3\right]=6\)
\(\Rightarrow P\ge\frac{3^2}{6}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1.
b/
Côsi: \(8^x+8^x+64\ge3\sqrt[3]{8^x.8^x.64}=12.4^x\Rightarrow8^x\ge6.4^x-32\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-96\)
\(4^x+4^y+4^z\ge3\sqrt[3]{4^{x+y+z}}=3\sqrt[3]{4^6}=48\)
\(\Rightarrow-2\left(4^x+4^y+4^z\right)\le-96\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-2\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)
2. giai phuong trinh: \(\sqrt{2x+3}+\sqrt{5-2x}=3x^2-12x+14\)(neu cach giai)
3. tim gia tri nho nhat cua: \(\frac{x+8}{\sqrt{x}+1}\)
4. tim gia tri nho nhat cua: \(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
5. cho a;b;c la 3 canh cua tam giac thoa man a+b+c=2 ; 0<a;b;c<1 c/m a^2+b^2+c^2+2abc<2
6. giai he phuong trinh 6(x+y)=5xy ; 12(y+z)=7zy ; 4(z+x)=3xz
7. cho a; b;c la 3 canh cua 1 tam giac c/m voi moi x,y,z \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)
8. cho x;y;z>0 thoa man x+y+z=2008 c/m \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}>hoac=2008\)
2)đk: x>=0 \(\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\left(\sqrt{x}+1\right)\right)}{\sqrt{x}+1}+\frac{9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)
\(x\ge0\Leftrightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1>0;\frac{9}{\sqrt{x}+1}>0\). áp dụng bđt cosi cho 2 số dương \(\sqrt{x}+1;\frac{9}{\sqrt{x}+1}\) ta có:
\(\sqrt{x}+1+\frac{9}{\sqrt{x}+1}\ge2\sqrt{9}=6\Leftrightarrow\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\ge6-2=4\)=> Min =4 <=> x=4.
nhớ l i k e
cho x,y,z>0 va x+y+z=3.Tim GTNN cua
a) P=\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\)
b) G=\(\frac{x^2}{x+2y^3}+\frac{y^2}{y+2z^3}+\frac{z^2}{z+2x^3}\)