Những câu hỏi liên quan
YH
Xem chi tiết
NL
19 tháng 3 2020 lúc 14:28

a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3\left(4y-3\right)+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12y-9+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14y=7\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{1}{2}\\x=\frac{4.1}{2}-3=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-1;\frac{1}{2}\right)\)

b, Ta có : \(\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\5\left(11-2y\right)-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\55-10y-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\-13y=-52\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2.4=3\\y=4\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

c, Ta có : \(\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}30x-27y=3\\30x+42y=72\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9y=1\\-69y=-69\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9=1\\y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(1;1\right)\)

d, Ta có : \(\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\x+2-2x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\2-x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2.0=3\\x=0\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(0;3\right)\)

e, Ta có : \(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\2\left(2-y\right)-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\4-2y-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\-5y=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2+1=3\\y=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-1\right)\)

f, Ta có : \(\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\5\left(11+2y\right)+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\55+10y+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\13y=-52\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-4\right)\)

g, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=9-5=4\\x=3\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

h, Ta có : \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+3\left(3x+8\right)=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+9x+24=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{31}{14}\\y=3.\left(-\frac{31}{14}\right)+8=\frac{19}{14}\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-\frac{31}{14};\frac{19}{14}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
19 tháng 3 2020 lúc 13:26

...????

Bình luận (0)
 Khách vãng lai đã xóa
KR
Xem chi tiết
NC
Xem chi tiết
MT
Xem chi tiết
NT
7 tháng 8 2022 lúc 20:48

a: \(x\in\left(-1;2\right)\)

b: \(x\in[8;10)\cup\left[25;30\right]\)

c: \(x\in\left(-\infty;-5\right)\cup[7;+\infty)\)

Bình luận (0)
VD
Xem chi tiết
FH
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:57

undefined

Bình luận (0)
TN
Xem chi tiết
DN
5 tháng 1 2019 lúc 20:57

Hỏi đáp ToánCòn lại tương tự

Bình luận (1)
NT
17 tháng 12 2022 lúc 14:49

Bài 3:

a: =>x-2y=1 và x-2y=1

=>0x=0 và x-2y=1

=>Hệ Phương trình có nghiệm tổng quát là:

\(\left\{{}\begin{matrix}x\in R\\y=\dfrac{x-1}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-6y=2\\x-6y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=\dfrac{x-2}{6}\end{matrix}\right.\)

Bình luận (0)
BD
Xem chi tiết
TB
3 tháng 11 2023 lúc 10:55

a) \(\left\{{}\begin{matrix}u_2-u_3+u_5=10\\u_4+u_6=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+d-u_1-2d+u_1+4d=10\\u_1+3d+u_1+5d=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+3d=10\\2u_1+8d=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\)

b)\(\left\{{}\begin{matrix}u_2-u_6+u_4=-7\\u_8-2u_7=2u_4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+d-u_1-5d+u_1+3d=-7\\u_1+7d-2\left(u_1+6d\right)=2\left(u_1+3d\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1-d=-7\\-3u_1-11d=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1=\dfrac{-11}{2}\\d=\dfrac{3}{2}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}u_7-u_3=8\\u_2.u_7=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+6d-u_1-2d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=2\\u_1^2+14u_1+24=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
LV
Xem chi tiết
MP
31 tháng 7 2018 lúc 21:18

a) \(x\in S=(-\infty;-5]\cup[7;+\infty)\)

b) \(x\in S=\left(-1;2\right)\cup(5;10]\)

Bình luận (0)
MD
Xem chi tiết
TH
25 tháng 1 2021 lúc 19:36

2: Điểm rơi... đẹp!

Áp dụng bất đẳng thức AM - GM:

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+4\ge4b\\c^2+9\ge6c\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2+14\ge2\left(a+2b+3c\right)=28\).

\(\Rightarrow a^2+b^2+c^2\ge14\).

Đẳng thức xảy ra khi a = 1; b = 2; c = 3.

Bình luận (0)
TH
25 tháng 1 2021 lúc 19:30

1: Ta có \(y^2\ge6-x+x-2=4\Rightarrow y\ge2\)

Đẳng thức xảy ra khi x = 6 hoặc x = 2

\(y^2\le2\left(6-x+x-2\right)=8\Rightarrow y\le2\sqrt{2}\).

Đẳng thức xảy ra khi x = 4.

 

Bình luận (0)