Những câu hỏi liên quan
TM
Xem chi tiết
TN
Xem chi tiết
NL
27 tháng 1 2021 lúc 20:11

\(f\left(x\right)=\dfrac{x^2+10x+16}{x}=x+\dfrac{16}{x}+10\ge2\sqrt{\dfrac{16x}{x}}+10=14\)

\(f\left(x\right)_{min}=14\) khi \(x=4\)

Bình luận (0)
KR
Xem chi tiết
NL
16 tháng 1 2021 lúc 19:51

\(f\left(x\right)=\dfrac{\sqrt{2}.\sqrt{x-2}}{\sqrt{2}x}\le\dfrac{1}{2\sqrt{2}x}\left(2+x-2\right)=\dfrac{1}{2\sqrt{2}}\)

Dấu "=" xảy ra khi \(x=4\)

Bình luận (0)
H24
Xem chi tiết
HP
6 tháng 2 2022 lúc 18:16

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

Bình luận (3)
H24
Xem chi tiết
TH
14 tháng 3 2021 lúc 17:17

Cách khác thì dùng AM - GM:

\(f\left(x\right)=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{2x^2.\dfrac{2}{x}.\dfrac{2}{x}}=6\).

Xảy ra đẳng thức khi x = 1.

Bình luận (0)
TH
14 tháng 3 2021 lúc 17:17

Ta có \(f\left(x\right)-6=\dfrac{2x^3+4-6x}{x}=\dfrac{2\left(x-1\right)^2\left(x+2\right)}{x}\ge0\) nên \(f\left(x\right)\ge6\).

Đẳng thức xảy ra khi và chỉ khi x = 1.

Bình luận (0)
1A
Xem chi tiết
NL
1 tháng 11 2021 lúc 15:36

\(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{\dfrac{2\left(x-1\right)}{x-1}}+1=2\sqrt{2}+1\)

\(f\left(x\right)_{min}=2\sqrt{2}+1\)

Bình luận (0)
HG
1 tháng 11 2021 lúc 15:39

Ta có: \(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)

Vì x > 1 nên x - 1 > 0 và \(\dfrac{2}{x-1}>0\)

Áp dụng bất đẳng thức cô-si cho hai số dương \(x-1;\dfrac{2}{x-1}\) ta được:

\(x-1+\dfrac{2}{x-1}\ge2.\sqrt{x-1.\dfrac{2}{x-1}}=2\sqrt{2}\)

\(=>f\left(x\right)=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{2}+1\)

⇒ Giá trị bé nhất của f(x) là 2√2 + 1 .

Dấu “=” xảy ra khi và chỉ khi x - 1 = \(\dfrac{2}{x-1}\) và x > 1 ⇔ x = 1 + √2

\(f\left(x\right)=x\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)

Bình luận (0)
H24
Xem chi tiết
RT
Xem chi tiết
H24
18 tháng 10 2021 lúc 21:25

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2

Bình luận (0)
WS
Xem chi tiết