Những câu hỏi liên quan
TL
Xem chi tiết
H24
Xem chi tiết
TC
9 tháng 8 2021 lúc 8:41

undefined

Bình luận (0)
NS
Xem chi tiết
LL
Xem chi tiết
DM
Xem chi tiết
NT
20 tháng 12 2021 lúc 11:31

a: \(\Leftrightarrow-15x+10=-7x+14\)

=>-8x=4

hay x=-1/2

Bình luận (0)
NM
20 tháng 12 2021 lúc 11:34

\(a,\dfrac{2-3x}{x-2}=-\dfrac{7}{5}\left(x\ne2\right)\\ \Leftrightarrow14-7x=10-15x\\ \Leftrightarrow8x=-4\Leftrightarrow x=-2\left(tm\right)\\ c,\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{5}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{2\cdot2+5\cdot3-4}=\dfrac{45}{15}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=6\\y-2=15\\z-3=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=17\\z=15\end{matrix}\right.\\ d,\Leftrightarrow\dfrac{x}{1}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{6x+7y+8z}{24+84+120}=\dfrac{456}{228}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=24\\z=30\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
KT
Xem chi tiết
MS
24 tháng 8 2017 lúc 21:25

a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)

b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)

\(2\ne3\ne4\) nên \(x\in\varnothing\)

c)

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)

Với mọi \(x\ge0\) ta có:

\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)

\(\Leftrightarrow9x+90=x-1\)

\(\Leftrightarrow9x=x-89\)

\(\Leftrightarrow-8x=89\)

\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)

Với mọi \(x< 0\) ta có:

\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)

\(\Leftrightarrow-9x-90=x-1\)

\(\Leftrightarrow-9x=x+89\)

\(\Leftrightarrow-10x=89\)

\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)

d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)

Bình luận (0)
TA
Xem chi tiết
BL
Xem chi tiết
LD
14 tháng 10 2020 lúc 15:02

x2 + 2x + y2 - 6y + 4z2 - 4z + 11 = 0

<=> ( x2 + 2x + 1 ) + ( y2 - 6y + 9 ) + ( 4z2 - 4z + 1 ) = 0

<=> ( x + 1 )2 + ( y - 3 )2 + ( 2z - 1 )2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\\left(2z-1\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2\ge0\forall x,y,z\)

Dấu "=" xảy ra tức (*) <=> \(\hept{\begin{cases}x+1=0\\y-3=0\\2z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\\z=\frac{1}{2}\end{cases}}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
BL
14 tháng 10 2020 lúc 15:28

6x bạn ơi

Bình luận (0)
 Khách vãng lai đã xóa