Cmr nếu có
(a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/b=c/d
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d
Giúp mik với ạ
(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)
=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2
=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2
=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)
=>4ad=4bc
=>ad=bc
=>a/c=b/d
cho a/b, c/d với a,b,c,d thuộc Z, b,d >0
CMR:
a , nếu a/b <c/d thì ad<bc
b,nếu a/b < c/d thì a/b < a+c/b+d<c/d
a,
b, a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Vì \(b,d>0\)nên \(bd>0\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow ad< bc\)vì \(bd>0\)
CMR : Nếu (a + b + c + d )(a - b - c + d ) = ( a - b + c - d ) ( a + b - c - d ) thì a / c = b / d
CMR nếu: (x + y - c - d)(a - b - c - d) = (a+b - c - d)(a-b+c+d) thì \(\frac{a+b}{a-b}=\frac{c-d}{c+d}\)
Ta có: \(\left(a+b+c-d\right)\left(a-b-c-d\right)=\left(a+b-c+d\right)\left(a-b+c+d\right)\)
\(\Rightarrow\frac{a+b+c-d}{a+b-c+d}=\frac{a-b+c+d}{a-b-c-d}\Leftrightarrow\frac{\left(a+b\right)+\left(c-d\right)}{\left(a+b\right)-\left(c-d\right)}=\frac{\left(a-b\right)+\left(c+d\right)}{\left(a-b\right)-\left(c+d\right)}.\)
Đặt \(A=a+b;B=c-d;C=a-b;D=c+d.\)Ta được:
\(\frac{A+B}{A-B}=\frac{C+D}{C-D}\Rightarrow\frac{A}{B}=\frac{C}{D}\Leftrightarrow\frac{a+b}{c-d}=\frac{a-b}{c+d}\Rightarrow\frac{a+b}{a-b}=\frac{c-d}{c+d}\)
Vậy ta được:
\(\left(a+b+c-d\right)\left(a-b-c-d\right)=\left(a+b-c+d\right)\left(a-b+c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c-d}{c+d}.\)
cmr a,nếu a/b=c/d thì a+b/b+c=c+d/d
đặt k=a/b=c/d => a=bk;c=dk
=> \(\frac{a+b}{b}=\frac{b+bk}{b}=\frac{b\left(1+k\right)}{b}=1+k\)
=>\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)
=>nếu a/b=c/d thì a+b/b = c+d/d
cho 2 ps a/b và c/d (b,d > 0). CMR nếu a/b < c/d thì a/b<a+c/b+d<c/d
cmr nếu a/b < c/d (b,d >0) thì a/b < a+c/b+d < c/d
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ad+ab< bc+ab\Leftrightarrow a\left(d+b\right)< b\left(c+a\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)(2)
Từ (1) và (2) suy ra điều phải chứng minh