Nếu a+2b+3c=0 và a+c=0 thì phương trình asinx+bcos2x+c=0 có ít nhất 1 nghiệm trong khoảng (0;\(\frac{\pi}{6}\))
Nếu a+2b+3c=0 và a+c=0 thì phương trình asinx+bcos2x+c=0 có ít nhất 1 nghiệm trong khoảng (0;\(\frac{\pi}{6}\))
Cho hai phương trình ax2+bx+c=0(a khác 0) và mx2+nx+p=0 (m khác 0).Chứng minh rằng nếu ít nhất một trong hai phương trình trên vô nghiệm thì phương trình sau đây luôn có nghiệm (an-bm)x2 +2(ap-cm)x +bp-cn=0
Cho hàm số f x xác định trên a ; b . Có bao nhiêu khẳng định sai trong các khẳng định sau?
(I) Nếu f x liên tục trên a ; b và f a . f b < 0 thì phương trình f x = 0 không có nghiệm trên a ; b
(II) Nếu f a . f b < 0 thì hàm số f x liên tục trên a ; b
(III) Nếu f x liên tục trên a ; b và f a . f b < 0 thì phương trình f x = 0 có ít nhất một nghiệm trên a ; b
(IV) Nếu phương trình f x = 0 có nghiệm trên a ; b thì hàm số f x liên tục trên a ; b
A. 1
B. 3
C. 2
D. 4
Đáp án B
Có 1 khẳng định đúng là: Nếu f x liên tục trên a ; b và f a . f b < 0 thì phương trình f x = 0 có ít nhất một nghiệm trên a ; b
CMR nếu a, b, c là những số khác 0 thì trong 3 phương trình sau phải có ít nhất 1 phương trình có nghiệm:
\(ãx^2+2bx+c=0\left(1\right)\)
\(bx^2+2cx+a=0\left(2\right)\)
\(cx^2+2ax+b=0\left(3\right)\)
Cho 2 phương trình :x^2+ax+1=0 và x^2+bx+1=0.Chứng minh rằng :Nếu ab>=4 thì tồn tại ít nhất một trong 2 phương trình đã có nghiệm .
x2+ax+1=0
Δ1=a²−4
x2+bx+1=0
Δ2=b²−4
Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2
→ Hoặc Δ1=a²−4≥0
→ Hoặc Δ2=b²≥0
cho đa thức f(x)=ax^2+bx+c
a) nếu biết 14a+2b+3c=0. CMR:3 số f(-2);f(1);f(3) có ít nhất một nghiệm không âm
b)CMR nếu f(1)2012;f(-2)=f(3)=2036 thì đa thức f(x) voo nghiệm
Trong các phương trình sau,phương trình nào có ít nhất một nghiệm là số nguyên?
A.\(\left(x-\sqrt{5}\right)^2=5\) B.9x2-1=0 C.4x2-4x+1=0 D.x2+x+2=0
Viết chương trình giải phương trình ax + b = 0 (các hệ số a,b được nhập từ bàn phím)
Hướng dẫn có sẵn trong bài là:
- Nếu a khác 0 thì phương trình có nghiệm x=-b/a(âm b phần a)
- Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm
- Nếu a = 0 và b khác 0 thì phương trình vô nghiệm
uses crt;
var a, b: logint;
Begin
write('nhap so a ='); Readln(a);
write('nhap so b ='); readln(b);
If (a = 0 and b = 0)
then write ('pt co nghiem x thuoc R')
else
if (a=0 and b#0) then write('pt vo nghiem')
else
write(nghiẹm la x=': -b/a);
readln
end.
uses crt;
var a, b: logint;
Begin
write('nhap so a ='); Readln(a);
write('nhap so b ='); readln(b);
If (a = 0 and b = 0)
then write ('pt co nghiem x thuoc R')
else
if (a=0 and b#0) then write('pt vo nghiem')
else
write(nghiẹm la x=': -b/a);
readln
end.
Cho a,b,c là các số thực dương phân biệt có tổng bằng 3. Chứng minh rằng trong ba phương trình \(x^2-2ax+b=0;x^2-2bx+c;x^2-2cx+a=0\)
có ít nhất một phương trình có hai nghiệm phân biệt và ít nhất một phương trình vô nghiệm
* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có :
pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)
pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)
pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)
\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*)
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)
trái với (*)
Vậy có ít nhất một phương trình có hai nghiệm phân biệt
cái kia chưa bt làm -_-
nhầm r >_< sửa lại chỗ này nhé
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)< 0\\b\left(3-b\right)< 0\\c\left(3-c\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3a< a^2\\3b< b^2\\3c< c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)>3\left(a+b+c\right)-\left(a+b+c\right)=6>0\) :))