Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:
a ) 4 x 2 + 2 x − 5 = 0 b ) 9 x 2 − 12 x + 4 = 0 c ) 5 x 2 + x + 2 = 0 d ) 159 x 2 − 2 x − 1 = 0
Bài 1: Tìm m để phương trình \(\left(m-1\right)x^2+2x+m=0\) có ít nhất một nghiệm không âm
Bài 2: Với giá trị nào của a,b các phương trình bậc hai sau có 2 nghiệm chung
\(\left(2a+1\right)x^2-\left(3a-1\right)x+2=0\)
\(\left(b+2\right)x^2-\left(2b+1\right)x-1=0\)
Bài 3: a) Với giá trị nào của m thì 2 phương trình sau có nghiệm chung
\(2x^2+mx-1=0\) và \(mx^2-x+2=0\)
b) Tim \(m\in Z\) để 2 phương trình sau có ít nhất 1 nghiệm chung
\(x^2-mx-2=0\) và \(x^2-x+6m=0\)
Bài 5: \(\left(m+1\right)x^2-2\left(m+2\right)+m-3=0\)
Tìm m để phương trình sau có 2 nghiệm x1,x2 thỏa mãn:
a) \(x_1-3x_2=3\)
b) \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
CMR nếu a, b, c là những số khác 0 thì trong 3 phương trình sau phải có ít nhất 1 phương trình có nghiệm:
\(ãx^2+2bx+c=0\left(1\right)\)
\(bx^2+2cx+a=0\left(2\right)\)
\(cx^2+2ax+b=0\left(3\right)\)
Cho a,b,c là các số thực dương phân biệt có tổng bằng 3. Chứng minh rằng trong ba phương trình \(x^2-2ax+b=0;x^2-2bx+c;x^2-2cx+a=0\)
có ít nhất một phương trình có hai nghiệm phân biệt và ít nhất một phương trình vô nghiệm
cho \(a\ge0,b\ge0,c\ge0\) thỏa mãn a+2b+c=1
chứng minh rằng ít nhất một trong hai phương trình sau có nghiệm
\(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)
\(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)
Giải chi tiết hộ mk
a)Cho hai phương trình \(x^2+2mx+mn-1=0\) và \(x^2-2nx+m+n=0\) (m,n là tham số)
Chứng minh rằng với mọi giá trị của m và n ít nhất một trong hai phương trình trên có nghiệm
b)Gọi a và b là 2 nghiệm của phương trình \(x^2+px+1=0\)
c và d là 2 nghiệm của phương trình \(x^2+qx+1=0\)
chứng minh hệ thức \(\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)=\left(p-q\right)^2\)
Cho hai phương trình:
\(x^3+3x^2+2x=0\) và \(\left(x+1\right)\left(x^2+2x+1+a\right)=0\) (với x là ẩn số). Tìm các giá trị của a để hai phương trình trên chỉ có một nghiệm chung duy nhất
Cho các phương trình\(x^2+bx+c=0\) và \(x^2+cx+b=0\) trong đó \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\)
Chứng minh
rằng ít nhất một trong các phương trình trên có nghiệm.
cho phương trình \(x^2+\left(2m-5\right)x-n=0\) ( x là ẩn số)
với m=5 , tìm n nguyên nhỏ nhất để phương trình có nghiệm dương