Cho A= 3+3^2+3^2+...+3^100
Tìm n thuộc N biết rằng 2.A+3=3^n
a) Chứng tỏ rằng 3^0 + 3^1 + 3^2 + 3^3 +.....+3^11 chia hết cho 40
b) Tìm n thuộc N* biết 2016n^2 + 2016n+2 chia hết cho n+1
A= 3_3^2+3^3+...+3^100
Tìm n thuộc N biết rằng 2A+3=3^n
3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101
A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100
3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100
= 3 ^ 101 - 1
2A = 3 ^ 101 - 1
2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n
=> ko có n thỏa mãn
3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101
A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100
3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100
= 3 ^ 101 - 1
2A = 3 ^ 101 - 1
2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n
=> ko có n thỏa mãn
3A = 3 + 3^ 2 + 3^3 + ... + 3 ^ 100 + 3 ^ 101
A =1 + 3 + 3 ^ 2 + .. + 3 ^ 100
3A - A = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 100 + 3 ^ 101 - 1 - 3 - 3 ^ 2 - ... - 3^ 100
= 3 ^ 101 - 1
2A = 3 ^ 101 - 1
2A + 3 = 3 ^ 101 - 1 + 3 = 3 ^ 101 + 2 khác 3 ^ n
=> ko có n thỏa mãn
Bài 1: Cho A=3 + 3 mũ 2 + 3 mũ 3 + ... +3 mũ 2010.
a, Tìm c/s tận cùng của A.
b, Chứng tỏ 2A+ 3 là 1 lũy thừa của 3.
c,Tìm x thuộc N biết: 2A-3=3 mũ x.
d, CMR A chia hết cho 13.
Bài 2: Chứng minh rằng:
a, 942 mũ 60 - 351 mũ 37 chia hêt cho 5.
b ( n + 2009) . ( n+ 2010) chia hết cho 2 với mọi STN n.
Bài 4: Tìm n thuộc N biết:
a, ( n + 9) chia hết cho ( n + 5)
b, 2 mũ n - 3 hết mũ - 2 mũ n = 448
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
a) Tìm số tự nhiên x biết 8 chia hết cho (x-3)
b) Chính tỏ rằng với mọin thuộc N , N>1 thì 3^n+2-2^n+3^n-2^n chia hết cho 10
Bài 1 : Tìm x thuộc N , biết :
11x + 5 chia hết cho 2x + 3 .
Bài 2 : Cho ( 5a + 6b ) chia hết cho 13 . Chứng minh ( a + 9b ) chia hết cho 13 .
Bài 3 : Chứng minh rằng : 3 n+3 + 3 n+1 + 2 n+3 + 2 n+2 .
Bài 4 : Tìm x,y thuộc N , biết : 25 - y 2 = 8 . ( x - 2009 ) 2 .
Chứng Minh Rằng:
a) n^2 + n + 3 không chia hết cho 2 ( n thuộc Z )
b) n^3 + 3n^3 + 2n chia hết cho 6 ( n thuộc Z )
1 tính giá trị của biểu thức
B=-1+2-3+4-5+....-99+100
Tìm tất cả các số nguyên n thỏa mãn:5n+14 chia hết cho n+2
1. Tìm a,b,c biết :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và : 2a + 3b - 5c = -28
2. Chứng minh rằng :
A = 3n+3 + 2n+3 + 3n+1 + 3n+2 chia hết cho 6 . ( n thuộc N )
Ai giải nhanh giùm cả 2 bài mình **** cho 5 giờ vào học rồi .
1. Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{25}=\frac{2a+3b-5c}{4+9-25}=\frac{-28}{-12}=\frac{7}{3}\)
\(\Rightarrow\frac{2a}{4}=\frac{7}{3}\Rightarrow2a=\frac{7}{3}.4=\frac{28}{3}\Rightarrow a=\frac{28}{3}:2=\frac{14}{3}\)
\(\Rightarrow\frac{3b}{9}=\frac{7}{3}\Rightarrow3b=\frac{7}{3}.9=21\Rightarrow b=21:3=7\)
\(\Rightarrow\frac{5c}{25}=\frac{7}{3}\Rightarrow5c=\frac{7}{3}.25=\frac{175}{3}\Rightarrow c=\frac{175}{3}:5=\frac{35}{3}\)
Vậy a = .......
b = ..........
c = ..............
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)
\(\Rightarrow\frac{2a}{4}=4\Rightarrow2a=4.4=16\Rightarrow a=16:2=8\)
\(\Rightarrow\frac{3b}{9}=4\Rightarrow3b=4.9=36\Rightarrow b=36:3=12\)
\(\Rightarrow\frac{5c}{20}=4\Rightarrow5c=4.20=80\Rightarrow c=80:5=16\)
Vậy a = 8
b = 12
c = 16
Cho biểu thức A = 3/22+ 3/32 +3/42+....+3/n2 với n thuộc N và n>1. Chứng tỏ rằng A <3
Ai trả lời nhanh nhất thì mình sẽ k cho.