cho a,b thuộc z.2a^2+b^2-2ab-5b+11<0.tính a^5+b^4
cho a,b thuộc z.2a^2+b^2-2ab-5b+11<0.tính a^5+b^4
\(2a^2+b^2-2ab-5b+11< 0\)
\(\Leftrightarrow4a^2+2b^2-4ab-10b+22< 0\)
\(\Leftrightarrow4a^2-4ab+b^2+b^2-10b+25< 3\)
\(\Leftrightarrow\left(2a-b\right)^2+\left(b-5\right)^2< 3\)
Ta có các trường hợp:
- \(\hept{\begin{cases}2a-b=0\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=5\end{cases}}\)(loại)
- \(\hept{\begin{cases}2a-b=1\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=5\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=0\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=6\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=1\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{7}{2}\\b=6\end{cases}}\)(loại)
Tìm a,b thuộc Z thỏa mãn
a, 5b-3a=2ab-11
b, 1/2a+1/b=1
cho biết 3a - 2b chia hết cho 11 ( a, b thuộc Z)
chung minh rang 2a - 5b chia het cho 11
cho a,b khác 0, a2-2ab-3b2=0. tính A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)
a^2 - 2ab - 3b^2 = 0
<=> a^2 - 3ab + ab - 3b^2 = 0
<=> a(a - 3b) + b(a - 3b) = 0
<=> (a - 3b)(a + b) = 0
=> a - 3b = 0 hoặc a + b = 0
=> a = 3b hoặc a = -b
+ Nếu a = 3b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (7.3b+2b)/(2.3b+b) + (9.3b-5b)/(2.3b-b)
A = 23b/7b + 22b/5b
A = 23/7 + 22/5 = 269/35
+ Nếu a = -b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (-7b+2b)/(-2b+b) + (-9b-5b)/(-2b-b)
A = -5b/-b + (-14b/-3b)
A = 5 + 14/3 = 29/3
cho biết 3a - 2b chia hết cho 11 ( a , b thuộc Z ) chứng minh rằng 2a - 5b chia hết cho 11
các bạn giúp mk nha
Cho a, b: \(2a^2+5b^2+2ab=1\)
Chứng minh: \(-\dfrac{1}{\sqrt{3}}\le\dfrac{a-b}{a+2b+2}\le\dfrac{1}{\sqrt{3}}\)
\(2a^2+5b^2+2ab=1\Leftrightarrow\left(a-b\right)^2+\left(a+2b\right)^2=1\)
Đặt \(P=\dfrac{a-b}{a+2b+2}\Rightarrow P\left(a+2b\right)+2P=a-b\)
\(\Rightarrow2P=\left(a-b\right)-P\left(a+2b\right)\)
\(\Rightarrow4P^2=\left[\left(a-b\right)-P\left(a+2b\right)\right]^2\le\left(P^2+1\right)\left[\left(a-b\right)^2+\left(a+2b\right)^2\right]=P^2+1\)
\(\Rightarrow3P^2\le1\Rightarrow-\dfrac{1}{\sqrt{3}}\le P\le\dfrac{1}{\sqrt{3}}\)
Câu 1: a)Biết rằng a,b,c thuộc Z. Hỏi số 3a^2.b.c^3; -2a^3b^5c; -3a^5b^2c^2 có thể cung âm không?
Cho hai tích -2a^5b^2 và 3a^2b^6 cùng dấu. Tìm dấu của a?
Cho a và b trái dấu, 3a^2b^1980 và -19a^5b^1890 cùng dấu. Xác định dấu của a và b?
b)Cho x thuộc Z và E=(1-x)^4.(-x). Với điều kiện nào của x thì E =0;E>0;E<0.
ai giup minh voi mai phai nop roi
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
cho a,b khác 0 và a2-2ab-3b2=0 . tính A= (7a+2b)/(2a+b)+(9a-5b)/(2a-b).
Ghi cách lm giúp mik nha
a^2-2ab-3b^2=0
=>a^2-3ab+ab-3b^2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
mà a,b khác 0 => a+b khác 0
=>a-3b=0
=>a=3b
Thay vào A ta được:
A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)
=(7.3b+2b)/(2.3b+b)+(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b=23/7+22/5=......
ta có:a-2ab-3b2=0
=>a2-3ab+ab-3b2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
vìa,b khác 0=>a-3b=0
=>a=3b
thay vào A ta được:
A=(7.3b+2b)/(2.3b+b)+9=(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b
=23/7+22/5
=269/35
Vậy A=269/35
Tìm a,b thuộc Z biết
(2a+5b+1)(2|a|+a2+a+b)=105