Tim gia tri nho nhat cua cac bieu thuc sau:
a.(2x+1/3)^2-5/6
b.|2x-3|+|y-1/2|+3/4
1) Tim gia tri nho nhat cua cac bieu thuc sau
a) (2x+1)^4 -1
b) (x^2-16)^2 +/y-3/ -2
NT:(2x+1)^4>=0.Dấu ''='' xảy ra khi x=-1/2
=>(2x+1)^4-1>=-1.Dấu"=" xẩy ra khi x=-1/2
Vậy Min của biểu thức trên là -1
1) tim gia tri nho nhat cua cac bieu thuc sau
a) (2x+1)^4-1
b) (x^2-16)^2+/y-3/-2
a: \(\left(2x+1\right)^4-1\ge-1\)
Dấu '=' xảy ra khi x=-1/2
b: \(\left(x^2-16\right)^2+\left|y-3\right|-2\ge-2\)
Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(4;3\right);\left(-4;3\right)\right\}\)
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16
tim gia tri lon nhat hoac nho nhat cua cac bieu thuc sau
c)C= \(3+|x-2|\)
d)D=\(5-|2x-1|\)
giup minh cau nay nhe
tim gia tri nho nhat cua bieu thuc A= 4x(2x+1) - 2(2x-3)2
1. tong binh phuong tac ca cac nghiem cua phuong trinh :x4(x-1)+(x-1)x3=0
2.gia tri lon nhat cua bieu thuc7x-2x2
3.nghiem nho nhat cua da thuc 11x-2x2-15
Tim gia tri nho nhat cua cac bieu thuc sau:
B=2x2+10x-1
C=5x-x2
\(2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)
\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)
\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
+) \(B=2.\left(x^2+5x-\frac{1}{2}\right)\)
\(B=2.\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(B=2.\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=1.\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
Vậy Min B=-27/2 khi và chỉ khi x=-5/2
1.gia tri lon nhat cua bieu thuc 7x-2x2
2.gia tri x>1 thoa man (9x-7)2=(5-2x)2
3.gia tri nho nhat cua x4+x2-5.42
1.ta có: 7x-2x^2=-2(x^2-7/2x)
=-2(x^2-2*7/4x+49/16-49/16)
=-2(x-7/4)^2+49/8 <=49/8
Dấu bằng xáy ra <=> x=7/4
Vậy max=49/8 <=> x=7/4
tim gia tri nho nhat cua bieu thuc M=(x-1)^2+(y+3)^2+5
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5